PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A risk assessment method of aircraft structure damage maintenance interval considering fatigue crack growth and detection rate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The accurate assessment of aircraft structure damage risk is the premise of establishing reasonable, economic and reliable maintenance intervals. While many studies have proposed damage risk assessment methods for aircraft structures, these methods lack the quantification of risk. This paper proposed a risk assessment method of aircraft structure damage maintenance interval considering fatigue crack growth rate and crack detection rate. The damage process of aircraft structure was simulated by Monte Carlo simulation to realize the quantitative assessment of aircraft structure damage risk and maintenance interval. Taking an aircraft fleet as an example, the damage risk of its wing structure was simulated and analyzed. The results show that if the risk is controlled within a reasonable range, the maintenance interval should be shortened to 16 flight hours. At the same time, through the analysis of the risk classification standard and the crack detection rate, the quantitative evaluation of the risk classification standard was realized.
Rocznik
Strony
art. no. 3
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
  • 92728th of PLA, Shanghai 200443, China
autor
  • 92728th of PLA, Shanghai 200443, China
autor
  • 92728th of PLA, Shanghai 200443, China
autor
  • 92728th of PLA, Shanghai 200443, China
autor
  • 92728th of PLA, Shanghai 200443, China
autor
  • 92728th of PLA, Shanghai 200443, China
Bibliografia
  • 1. Aghaie M, Norouzi A, Zolfaghari A, et al. Advanced progressive real coded genetic algorithm for nuclear system availability optimization through preventive maintenance scheduling. Annals of Nuclear Energy, 2013; 60: 64-72, https://doi.org/10.1016/j.anucene.2013.04.023.
  • 2. Amura M, Allegrucci L, De Paolis F, et al. Fatigue fracture of an AMX aircraft main wheel. Engineering Failure Analysis, 2013; 27: 194-202, https://doi.org/10.1016/j.engfailanal.2012.08.023.
  • 3. Chang Y H, Wang Y C. Significant human risk factors in aircraft maintenance technicians. Safety science, 2010; 48(1): 54-62, https://doi.org/10.1016/j.ssci.2009.05.004.
  • 4. Chemweno P, Pintelon L, Muchiri P N, et al. Risk assessment methodologies in maintenance decision making: A review of dependability modelling approaches. Reliability Engineering & System Safety, 2018; 173: 64-77, https://doi.org/10.1016/j.ress.2018.01.011.
  • 5. Chen D, Wang X, Zhao J. Aircraft maintenance decision system based on real-time condition monitoring. Procedia Engineering, 2012; 29: 765-769, https://doi.org/10.1016/j.proeng.2012.01.038.
  • 6. Chen H, Li L, Sun Y. Risk assessment of aero engine failure based on Monte Carlo simulation. Procedia Engineering, 2014; 80: 415-423, https://doi.org/10.1016/j.proeng.2014.09.099.
  • 7. Chen Y L, Chen L, Bian G X, et al. Corrosion protection control and calendar life design of advanced carrier-based aircraft. Acta Aeronuatica et Astronautica Sinica, 2021; 42(8): 371-383, https://doi.org/10.7527/S1000-6893.2021.25786.
  • 8. Chen Y L, Wu X J, Bian G X, et al. Calendar life design method for fatigue critical parts of fighter based on DFR method. Acta Aeronuatica et Astronautica Sinica: 2022; 27614, https://doi.org/10.7527/S1000-6893.2022.27614.
  • 9. Cid C, Baldomir A, Rodríguez-Segade M, et al. An open-source framework for aircraft damage simulation in engine failure events. Journal of Computational Science, 2022; 101682, https://doi.org/10.1016/j.jocs.2022.101682.
  • 10. DoD U S. Department of defense standard practice: system safety. MIL-STD-882E, 2012.
  • 11. Gobbato M, Conte J P, Kosmatka J B, et al. A reliability-based framework for fatigue damage prognosis of composite aircraft structures. Probabilistic Engineering Mechanics, 2012; 29: 176-188, https://doi.org/10.1016/j.probengmech.2011.11.004.
  • 12. Gorbunov V, Kuznetsov S, Savvina A, et al. Methodological aspects of avionics reliability at low temperatures during aircraft operation in the Far North and the Arctic. Transportation Research Procedia, 2021; 57: 220-229, https://doi.org/10.1016/j.trpro.2021.09.045.
  • 13. Hassan M, Danish F, Yousuf W B, et al. Comparison of different life distribution schemes for prediction of crack propagation in an aircraft wing. Engineering Failure Analysis, 2019; 96: 241-254, https://doi.org/10.1016/j.engfailanal.2018.10.010.
  • 14. Hu G, Deng S, Wang G, et al. Corrosion crack's propagation analysis and fatigue life prediction of the cylinder of 6000HP hydraulic fracturing pump. Engineering Failure Analysis, 2022; 141: 106652, https://doi.org/10.1016/j.engfailanal.2022.106652.
  • 15. Jamali N, Feylizadeh M R, Liu P. Prioritization of aircraft maintenance unit strategies using fuzzy Analytic Network Process: A case study. Journal of Air Transport Management, 2021; 93: 102057, https://doi.org/10.1016/j.jairtraman.2021.102057.
  • 16. Kamath G M, Mangalgiri P D, Shet A. A quantitative assessment of the impact of corrosion on fatigue life of aircraft components. Engineering Failure Analysis, 2022; 133: 105973, https://doi.org/10.1016/j.engfailanal.2021.105973.
  • 17. Kang R. Fundamentals of reliability and maintainability and supportability engineering. Beijing: National Defense Industry Press, 2012; 271-274.
  • 18. Kiracı K, Akan E. Aircraft selection by applying AHP and TOPSIS in interval type-2 fuzzy sets. Journal of Air Transport Management, 2020; 89: 101924, https://doi.org/10.1016/j.jairtraman.2020.101924.
  • 19. Lee D, Kwon K. Dynamic Bayesian network model for comprehensive risk analysis of fatigue-critical structural details. Reliability Engineering & System Safety, 2022; 108834, https://doi.org/10.1016/j.ress.2022.108834.
  • 20. Lee J, Mitici M. An integrated assessment of safety and efficiency of aircraft maintenance strategies using agent-based modelling and stochastic Petri nets. Reliability Engineering & System Safety, 2020; 202: 107052, https://doi.org/10.1016/j.ress.2020.107052.
  • 21. Ma H L, Sun Y, Chung S H, et al. Tackling uncertainties in aircraft maintenance routing: A review of emerging technologies. Transportation Research Part E: Logistics and Transportation Review, 2022; 164: 102805, https://doi.org/10.1016/j.tre.2022.102805.
  • 22. Ma J, Bai N, Zhou Y, et al. Generalized hierarchical Bayesian inference for fatigue life prediction based on multi-parameter Weibull models. International Journal of Fatigue, 2022; 162: 106948, https://doi.org/10.1016/j.ijfatigue.2022.106948.
  • 23. Park J P, Ham J, Mohanty S, et al. Nuclear engineering and technology statistical analysis of SN type environmental fatigue data of Ni-base alloy welds using weibull distribution. Nuclear Engineering and Technology, 2022; https://doi.org/10.1016/j.net.2022.08.005.
  • 24. Pascoe J A. Slow-growth damage tolerance for fatigue after impact in FRP composites: Why current research won’t get us there. Theoretical and Applied Fracture Mechanics, 2021; 116: 103127, https://doi.org/10.1016/j.tafmec.2021.103127.
  • 25. Rajic N, Brooks C. Automated crack detection and crack growth rate measurement using thermoelasticity. Procedia Engineering, 2017; 188: 463-470, https://doi.org/10.1016/j.proeng.2017.04.509.
  • 26. Rebhi L, Krstic B, Boutemedjet A, et al. Fatigue fracture analysis of an ADF antenna in a military aircraft. Engineering Failure Analysis, 2018; 90: 476-488, https://doi.org/10.1016/j.engfailanal.2018.04.013.
  • 27. Safoklov B, Prokopenko D, Deniskin Y, et al. Model of aircraft maintenance repair and overhaul using artificial neural networks. Transportation Research Procedia, 2022; 63: 1534-1543, https://doi.org/10.1016/j.trpro.2022.06.165.
  • 28. Sheng J, Prescott D. Using a novel hierarchical coloured Petri net to model and optimise fleet spare inventory, cannibalisation and preventive maintenance. Reliability Engineering & System Safety, 2019; 191: 106579, https://doi.org/10.1016/j.ress.2019.106579.
  • 29. Strzelecki P. Determination of fatigue life for low probability of failure for different stress levels using 3-parameter Weibull distribution. International Journal of Fatigue, 2021; 145: 106080, https://doi.org/10.1016/j.ijfatigue.2020.106080.
  • 30. Sun Z, Yu T, Pang H, et al. Failure mechanism and reliability analysis of the rear cargo door lock of transport aircraft. Engineering Failure Analysis, 2021; 122: 105182, https://doi.org/10.1016/j.engfailanal.2020.105182.
  • 31. Valdés R M A, Comendador V F G, Sanz L P, et al. Prediction of aircraft safety incidents using Bayesian inference and hierarchical structures. Safety science, 2018; 104: 216-230, https://doi.org/10.1016/j.ssci.2018.01.008.
  • 32. Van der Weide T, Deng Q, Santos B F. Robust long-term aircraft heavy maintenance check scheduling optimization under uncertainty. Computers & Operations Research, 2022; 141: 105667, https://doi.org/10.1016/j.cor.2021.105667.
  • 33. Wang N, Hu J, Ma L, et al. Availability analysis and preventive maintenance planning for systems with general time distributions. Reliability Engineering & System Safety, 2020; 201: 106993, https://doi.org/10.1016/j.ress.2020.106993.
  • 34. Weide T V D, Deng Q, Santos B F. Robust long-term aircraft heavy maintenance check scheduling optimization under uncertainty. Computers & Operations Research, 2022; 141: 105667, https://doi.org/10.1016/j.cor.2021.105667.
  • 35. Zhang C, Wan L, Wan R Q, et al. Automated fatigue crack detection in steel box girder of bridges based on ensemble deep neural network. Measurement, 2022; 111805, https://doi.org/10.1016/j.measurement.2022.111805.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7d12053-7e3b-4618-a95b-2244f93b15e7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.