Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Full waveform inversion based on a local traveltime correction and zero-mean cross-correlation-based misft function

Warianty tytułu
Języki publikacji
Full waveform inversion (FWI) sufers from the cycle skipping problem, because the observed data usually lack low-frequency components or due to errors in the wavelet estimation. In addition, the strong low-frequency non-zero-mean noise can have a large impact on FWI results. Thus, we propose a local waveform traveltime correction scheme to solve the situations when the observed data lack low-frequency components or when the estimation for the wavelet is incorrect. We use a sliding time window, which is used to decrease the traveltime diferences between the calculated and observed data to increase the cross-correlation between them. Besides, we propose a zero-mean normalized cross-correlation misft function to reduce the interference of the low-frequency non-zero-mean noise. Therefore, we propose new approaches to improve FWI results whether the observed data lack low-frequency components or the observed data are contaminated by the non-zero-mean lowfrequency noise. Numerical examples on Marmousi model show the feasibility of a FWI based on the zero-mean normalized cross-correlation misft function and a FWI based on the local traveltime correction method.
Opis fizyczny
Bibliogr. 53 poz.
  • College of Geo-Exploration Science and Technology, Jilin University, Changchun, China
  • College of Geo-Exploration Science and Technology, Jilin University, Changchun, China
  • College of Geo-Exploration Science and Technology, Jilin University, Changchun, China
  • College of Geo-Exploration Science and Technology, Jilin University, Changchun, China
  • 1. Alkhalifah T (2016) Full-model wavenumber inversion: an emphasis on the appropriate wavenumber continuation. Geophysics 81:R89–R98.
  • 2. Alkhalifah T, Choi Y (2014) From tomography to full-waveform inversion with a single objective function. Geophysics 79:R55–R61.
  • 3. Bai J, Yingst D, Bloor R, Leveille J (2014) Viscoacoustic waveform inversion of velocity structures in the time domain. Geophysics 79:R103–R119.
  • 4. Biondi B, Symes WW (2004) Angle-domain common-image gathers for migration velocity analysis by wavefield-continuation imaging. Geophysics 69:1283–1298.
  • 5. Bishop TN et al (1985) Tomographic determination of velocity and depth in laterally varying media. Geophysics 50:903–923.
  • 6. Bozdağ E, Trampert J, Tromp J (2011) Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements. Geophys J Int 185:845–870.
  • 7. Bunks G, Saleck FM, Zaleski S, Chavent G (1995) Multiscale seismic waveform inversion. Geophysics 60:1457–1473.
  • 8. Chen G, Chen S, Wu R-S (2015) Full Waveform Inversion in time domain using time-damping filters. SEG Tech Program Expanded Abstr.
  • 9. Chi B, Dong L, Liu Y (2014) Full waveform inversion method using envelope objective function without low frequency data. J Appl Geophys 109:36–46.
  • 10. Chi B, Dong L, Liu Y (2015) Correlation-based reflection full-waveform inversion. Geophysics 80:R189–R202.
  • 11. Choi Y, Alkhalifah T (2011) Source-independent time-domain waveform inversion using convolved wavefields: application to the encoded multisource waveform inversion. Geophysics 76:R125–R134.
  • 12. Choi Y, Alkhalifah T (2012) Application of multi-source waveform inversion to marine streamer data using the global correlation norm. Geophys Prospect 60:748–758.
  • 13. Choi Y, Alkhalifah T (2015) Unwrapped phase inversion with an exponential damping. Geophysics 80:R251–R264.
  • 14. Choi Y, Alkhalifah T (2018) Time-domain full-waveform inversion of exponentially damped wavefield using the deconvolution-based objective function. Geophysics 83:R77–R88.
  • 15. Datta D, Sen MK (2016) Estimating a starting model for full-waveform inversion using a global optimization method. Geophysics 81:R211–R223.
  • 16. Engquist B, Froese BD, Yang Y (2016) Optimal transport for seismic full waveform inversion. Commun Math Sci 14:2309–2330.
  • 17. Fomel S (2007) Local seismic attributes. Geophysics 72:A29–A33.
  • 18. Gauthier O, Virieux J, Tarantola A (1986) Two-dimensional nonlinear inversion of seismic waveforms: numerical results. Geophysics 51:1387–1403.
  • 19. Guo Q, Alkhalifah T (2017) Elastic reflection-based waveform inversion with a nonlinear approach. Geophysics 82:R309–R321.
  • 20. Hale D (2006) Fast local cross-correlations of images. SEG Tech Program Expanded Abstr.
  • 21. Hu W (2014) FWI without low frequency data-beat tone inversion. SEG Tech Program Expanded Abstr.
  • 22. Hu Y, Han L, Xu Z, Zhang F, Zeng J (2017) Adaptive multi-step full waveform inversion based on waveform mode decomposition. J Appl Geophys 139:195–210.
  • 23. Hu Y, Han L, Zhang P, Ge Q (2018) Time-frequency domain multi-scale full waveform inversion based on adaptive non-stationary phase correction. EAGE Tech Program Ext Abstr.
  • 24. Justice JH et al (1989) Acoustic tomography for enhancing oil recovery. Lead Edge 8:12–19.
  • 25. Krebs JR, Anderson JE, Hinkley D, Neelamani R, Lee S, Baumstein A, Lacasse MD (2009) Fast full-wavefield seismic inversion using encoded sources. Geophysics 74:WCC177–WCC188.
  • 26. Lailly P (1983) The seismic inverse problem as a sequence of before stack migrations. In: Conference on inverse scattering: theory and application, pp 206–220
  • 27. Lee KH, Kim HJ (2003) Source-independent full-waveform inversion of seismic data. Geophysics 68:2010–2015.
  • 28. Li Y, Choi Y, Alkhalifah T, Li Z, Zhang K (2018) Full-waveform inversion using a nonlinearly smoothed wavefield. Geophysics 83:R117–R127.
  • 29. Lian S, Yuan S, Wang G, Liu T, Liu Y, Wang S (2018) Enhancing low-wavenumber components of full-waveform inversion using an improved wavefield decomposition method in the time-space domain. J Appl Geophys 157:10–22.
  • 30. Liu Y, Teng J, Xu T, Wang Y, Liu Q, Badal J (2016) Robust time-domain full waveform inversion with normalized zero-lag cross-correlation objective function. Geophys J Int 209:106–122.
  • 31. Liu Q, Peter D, Tape C (2019) Square-root variable metric based elastic full-waveform inversion—part 1: theory and validation. Geophys J Int 218:1121–1135.
  • 32. Luo Y, Schuster GT (1991) Wave-equation traveltime inversion. Geophysics 56:645–653.
  • 33. Mikesell TD, Malcolm AE, Yang D, Haney MM (2015) A comparison of methods to estimate seismic phase delays: numerical examples for coda wave interferometry. Geophys J Int 202:347–360.
  • 34. Pan W, Huang L (2018) Elastic-wave-equation traveltime tomography in anisotropic media using differential measurements of long-offset data. SEG Tech Program Expand Abstr 2018:5233–5237.
  • 35. Pratt RG, Shin C, Hicks GJ (1998) Gauss–Newton and full Newton methods in frequency-space seismic waveform inversion. Geophys J Int 133:341–362.
  • 36. Sajeva A, Aleardi M, Stucchi E, Bienati N, Mazzotti A (2016) Estimation of acoustic macro models using a genetic full-waveform inversion: applications to the Marmousi model. Geophysics 81:R173–R184.
  • 37. Schuster GT, Wang X, Huang Y, Dai W, Boonyasiriwat C (2011) Theory of multisource crosstalk reduction by phase-encoded statics. Geophys J Int 184:1289–1303.
  • 38. Shin C, Ho Cha Y (2009) Waveform inversion in the Laplace–Fourier domain. Geophys J Int 177:1067–1079.
  • 39. Shin C, Min D-J (2006) Waveform inversion using a logarithmic wavefield. Geophysics 71:R31–R42.
  • 40. Sun B, Alkhalifah T (2019) Adaptive traveltime inversion. Geophysics 84:U13–U29.
  • 41. Symes WW, Carazzone JJ (1991) Velocity inversion by differential semblance optimization. Geophysics 56:654–663.
  • 42. Tarantola A (1984) Linearized inversion of seismic reflection data. Geophys Prospect 32:998–1015.
  • 43. Virieux J, Operto S (2009) An overview of full-waveform inversion in exploration geophysics. Geophysics 74:WCC1–WCC26.
  • 44. Wang G, Yuan S, Wang S (2019) Retrieving low-wavenumber information in FWI: an efficient solution for cycle skipping. IEEE Geosci Remote Sens Lett 16:1125–1129.
  • 45. Warner M, Guasch L (2014) Adaptive waveform inversion: theory. SEG Tech Program Expand Abstr.
  • 46. Wu R-S, Luo J, Wu B (2014) Seismic envelope inversion and modulation signal model. Geophysics 79:WA13–WA24.
  • 47. Xu S, Wang D, Chen F, Zhang Y, Lambare G (2012) Full waveform inversion for reflected seismic data. EAGE Tech Program Ext Abstr.
  • 48. Yang H, Han L, Zhang F, Sun H, Bai L (2016) Full waveform inversion without low frequency using wavefield phase correlation shifting method. J Seism Explor 25:45–55
  • 49. Yuan S, Wang S, Luo Y, Wei W, Wang G (2019) Impedance inversion by using the low-frequency full-waveform inversion result as an a priori model. Geophysics 84:R149–R164.
  • 50. Zhang P, Han L, Xu Z, Zhang F, Wei Y (2017) Sparse blind deconvolution based low-frequency seismic data reconstruction for multiscale full waveform inversion. J Appl Geophys 139:91–108.
  • 51. Zhang Z, Alkhalifah T, Wu Z, Liu Y, He B, Oh J (2019) Normalized nonzero-lag crosscorrelation elastic full-waveform inversion. Geophysics 84:R1–R10.
  • 52. Zhou B, Greenhalgh SA (2003) Crosshole seismic inversion with normalized full-waveform amplitude data. Geophysics 68:1320–1330.
  • 53. Zhu H, Fomel S (2016) Building good starting models for full-waveform inversionusing adaptive matching filtering misfit. Geophysics 81:U61–U72.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.