PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental investigation on mode II fracture performance of old-new concrete

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The old-new concrete interface is the weakest part in the composite structure, and there are a large number of microcracks on the interface. In order to study the mode II fracture performance of the bonding surface of old-new concrete, the effect of planting rebar and basalt fiber is investigated. Nine Z-shaped old-new concrete composite specimens with initial cracks are made. Nine shear fracture load-displacement curves are obtained, and the failure process and interface fracture are discussed. On this basis, the mode II fracture toughness and fracture energy are obtained. The regression equations for fracture toughness and fracture energy are deduced with analysis of variance (ANOVA). The results show that fracture toughness and fracture energy increase with the increase of planting rebar number and basalt fiber content. With the increase of the planting rebar number, mode II fracture toughness and fracture energy increase more significantly. Planting rebar is the major factor for mode II fracture performance.
Rocznik
Strony
469--480
Opis fizyczny
Bibliogr. 32 poz., il., tab.
Twórcy
autor
  • School of Civil Engineering, Northeast Forestry University, Harbin, China
  • Heilongjiang Transportation Investment Engineering Construction CO., LTD, Heilongjiang Transportation Investment Group Co, Harbin, China
autor
  • School of Civil Engineering, Northeast Forestry University, Harbin, China
autor
  • National & Local Joint Engineering Laboratory of Bridge and Tunnel Technology, Dalian University of Technology, Dalian, China
autor
  • National & Local Joint Engineering Laboratory of Bridge and Tunnel Technology, Dalian University of Technology, Dalian, China
Bibliografia
  • [1] H.T. Hu, F.M. Lin, H.T. Liu, Y.F. Huang, T.C. Pan, “Constitutive modeling of reinforced concrete and prestressed concrete structures strengthened by fiber-reinforced plastics”, Composite Structures, 2010, vol. 92, no. 7, pp. 1640-1650, DOI: 10.1016/j.compstruct.2009.11.030.
  • [2] C. Mang, L. Jason, L. Davenne, “A new bond slip model for reinforced concrete structures Validation by modelling a reinforced concrete tie”, Engineering Computations, 2015, vol. 32, no. 7, pp. 1934-1958, DOI: 10.1108/EC-11-2014-0234.
  • [3] D. Figueira, A. Ashour, G. Yildirim, A. Aldemir, M. Sahmaran, “Demountable connections of reinforced concrete structures: Review and future developments”, Structures, 2021, vol. 34, pp. 3028-3039, DOI: 10.1016/j.istruc.2021.09.053.
  • [4] W.W. Wang, J.G. Dai, G. Li, C.K. Huang, “Long-Term Behavior of Prestressed Old-New Concrete Composite Beams”, Journal of Bridge Engineering, 2011, vol. 16, no. 2, pp. 275-285, DOI: 10.1061/(ASCE)BE.1943-5592.0000152.
  • [5] E.K. Tschegg, M. Ingruber, C.H. Surberg, F. Munger, “Factors influencing fracture behavior of old-new concrete bonds”, ACI Materials Journal, 2000, vol. 97, no. 4, pp. 447-453, DOI: 10.14359/7409.
  • [6] J. Jiang, Y.X. Chen, J.W. Dai, “Old-New Concrete Interfacial Bond Slip Monitoring in Anchored Rebar Reinforced Concrete Structure Using PZT Enabled Active Sensing”, Frontiers In Materials, 2021, vol. 8, DOI: 10.3389/fmats.2021.723684.
  • [7] Y. He, X. Zhang, R.D. Hooton, X. Zhanga, “Effects of interface roughness and interface adhesion on new-to-old concrete bonding”, Construction and Building Materials, 2017, vol. 151, no. 1, pp. 582-590, DOI: 10.1016/j.conbuildmat.2017.05.049.
  • [8] J. Fan, L.Wu, B. Zhang, “Influence of Old Concrete Age, Interface Roughness and Freeze-Thawing Attack on New-to-Old Concrete Structure”, Materials, 2021, vol. 14, no. 5, art. ID 1057, DOI: 10.3390/ma14051057.
  • [9] W.-W. Wang, J.-g. Dai, G. Li, C.-k. Huang, “Long-Term Behavior of Prestressed Old-New Concrete Composite Beams”, Journal of Bridge Engineering, 2011, vol. 16, no. 2, pp. 275-285, DOI: 10.1061/(ASCE)BE.1943-5592.0000152.
  • [10] C. Maili, M. Jing, “ Experimental Study on Shear Behavior of the Interface between New and Old Concrete with Reinforced”, KSCE Journal of Civil Engineering, 2018, vol. 22, pp. 1882-1888, DOI: 10.1007/s12205-017-2007-6.
  • [11] X. Zhang, W. Zhang, Y. Luo, L. Wang, “Interface Shear Strength between Self-Compacting Concrete and Carbonated Concrete”, Journal of Materials in Civil Engineering, 2020, vol. 32, no. 6, DOI: 10.1061/(ASCE)MT.1943-5533.0003229.
  • [12] Y. Liang, Z. Lei, L. Dong, C. Bo, “Shear test of the rectangular beam on the new to old concrete interface based on Digital Image Correlation”, IOP Conf. Series: Earth and Environmental Science, 2019, vol. 267, no. 3, art. ID 032058, DOI: 10.1088/1755-1315/267/3/032058.
  • [13] S.P. Shah, “An overview of the fracture mechanics of concrete”, Cement Concrete and Aggregates, 1997, vol. 19, no. 2, pp. 79-86, DOI: 10.1520/CCA10319J.
  • [14] K.M.P. Fathima, J.M.C. Kishen, “A thermodynamic correlation between damage and fracture as applied to concrete fatigue”, Engineering Fracture Mechanics, 2015, vol. 146, pp. 1-20, DOI: 10.1016/j.engfracmech.2015.07.019.
  • [15] W. Chen, W. Xie, X. Li, W. Zou, H. Fu, “Determination of fracture energy and fracture toughness of two types of concrete and their interface”, European Journal of Environmental and Civil Engineering, 2021, vol. 25, no. 1, pp. 104-116, DOI: 10.1080/19648189.2018.1518159.
  • [16] M. Kurumatani, K. Terada, J. Kato, T. Kyoya, K. Kashiyama, “An isotropic damage model based on fracture mechanics for concrete”, Engineering Fracture Mechanics, 2016, vol. 155, pp. 49-66, DOI: 10.1016/j.engfracmech.2016.01.020.
  • [17] S.M. Farnam, F. Rezaie, “Simulation of crack propagation in prestressed concrete sleepers by fracture mechanics”, Engineering Failure Analysis, 2019, vol. 96, pp. 109-117, DOI: 10.1016/j.engfailanal.2018.09.012.
  • [18] F. Rezaie, S.M. Farnam, “Fracture mechanics analysis of pre-stressed concrete sleepers via investigating crack initiation length”, Engineering Failure Analysis, 2015, vol. 58, pp. 267-280, DOI: 10.1016/j.engfailanal.2015.09.007.
  • [19] M. Kurumatani, Y. Soma, K. Terada, “Simulations of cohesive fracture behavior of reinforced concrete by a fracture-mechanics-based damage model”, Engineering Fracture Mechanics, 2019, vol. 206, pp. 392-407, DOI: 10.1016/j.engfracmech.2018.12.006.
  • [20] H.W. Reinhardt, S.L. Xu, “A practical testing approach to determine mode II fracture energy G(IIF) for concrete”, International Journal of Fracture, 2000, vol. 105, no. 2, pp. 107-125, DOI: 10.1023/A:1007649004465.
  • [21] Y.W. Chen, J.L. Feng, H. Li, Z.F. Meng, “Effect of coarse aggregate volume fraction on mode II fracture toughness of concrete”, Engineering Fracture Mechanics, 2021, vol. 242, DOI: 10.1016/j.engfracmech.2020.107472.
  • [22] E.N.B.S. Júlio, F.A.B. Branco, V.D. Silva, “Concrete-to-concrete bond strength. Influence of the roughness of the substrate surface”, Construction and Building Materials, 2004, vol. 18, no. 9, pp. 675-681, DOI: 10.1016/j.conbuildmat.2004.04.023.
  • [23] G.R. Irwin, “Analysis of Stresses and Strains Near End of a Crack Traversing a Plate”, Journal of Applied Mechanics, 1957, vol. 24, pp. 361-364, DOI: 10.1115/1.4011547.
  • [24] B. Bahrami, M.R. Ayatollahi, I. Sedighi, M.Y. Yahya, “An insight into mode II fracture toughness testing using SCB specimen”, Fatigue & Fracture of Engineering Materials & Structures, 2019, vol. 42, no. 9, pp. 1991-1999, DOI: 10.1111/ffe.13069.
  • [25] M.R. Ayatollahi, M.R.M. Aliha, “On determination of mode II fracture toughness using semi-circular bend specimen”, International Journal of Solids And Structures, 2006, vol. 43, no. 17, pp. 5217-5227, DOI: 10.1016/j.ijsolstr.2005.07.049.
  • [26] H. Tada, P.C. Paris, G.R. Irwin, The stress analysis of cracks handbook. New York: ASME Press, 2000.
  • [27] A.T. Zehnder, “Griffith Theory of Fracture”, in Encyclopedia of Tribology, Q.J. Wang, Y.-W. Chung, Eds. Boston, MA: Springer US, 2013, pp. 1570-1573.
  • [28] J.-I. Sim, K.-H. Yang, S.-T. Yi, “Effects of Aggregate and Specimen Sizes on Lightweight Concrete Fracture Energy”, Journal of Materials in Civil Engineering, 2014, vol. 26, no. 5, pp. 845-854, DOI: 10.1061/(ASCE)MT.1943-5533.0000884.
  • [29] S.H.G. Mousavinejad, M.F. Gashti, “Effects of NaOH solution concentration and aging on fracture properties and ductility of ambient-cured heavy weight geopolymer concrete”, Construction and Building Materials, 2021, vol. 277, no. 29, art. ID 122266, DOI: 10.1016/j.conbuildmat.2021.122266.
  • [30] S. Muralidhara, B.K.R. Prasad, R.K. Singh, “Size independent fracture energy from fracture energy release rate in plain concrete beams”, Engineering Fracture Mechanics, 2013, vol. 98, pp. 284-295, DOI: 10.1016/j.engfracmech.2012.10.007.
  • [31] M.L. Gaddis, “Statistical methodology: IV. Analysis of variance, analysis of covariance, and multivariate analysis of variance”, Academic Emergency Medicine, 1998, vol. 5, no. 3, pp. 258-265, DOI: 10.1111/j.1553-2712.1998.tb02624.x.
  • [32] A. Dean, D. Voss, D. Draguljic, Analysis of Variance and Design of Experiments. Springer, 2017.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7c82a89-c14a-4e7a-88a8-054eb59c3ecc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.