Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The escalating demand for water and the increasing pollution of natural water bodies necessitate innovative solutions for wastewater treatment and reuse. This study investigated the potential of a horizontal subsurface flow (HSSF) constructed wetland to treat aquaculture wastewater for reuse. The system, planted with Taro (Colocasia esculenta) and sugarcane (Saccharum officinarum L.), received effluent from a recirculating aquaculture system (RAS) producing African Catfish (Clarias gariepinus). The study assessed the impact of varying hydraulic retention times (1–3 days) and flow rates (11–108 L/min) on water quality parameters, including dissolved oxygen, electrical conductivity, salinity, total dissolved solids, temperature, and pH. Results showed significant increase in dissolved oxygen (4.25–5.52 mg/L), while electrical conductivity (491–677 µS/cm), salinity (0.23–0.32 ppt), and total dissolved solids (237–332 mg/L) decreased considerably. Temperature (29.28–31.07°C) and pH (7.57–7.59) remained stable and within acceptable ranges for reuse in African Catfish production. However, retention time and flow rate did not significantly affect treatment efficiency within the tested parameters. Further research is recommended to explore the impact of longer retention times, wider flow rate ranges, different plant species and substrate types, and microbial community analysis to optimize the system’s performance and promote sustainable aquaculture practices.
Czasopismo
Rocznik
Tom
Strony
53--61
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
- CSIR-Crops Research Institute, Kumasi, Ghana
autor
- CSIR-Crops Research Institute, Kumasi, Ghana
autor
- CSIR-Crops Research Institute, Kumasi, Ghana
autor
- CSIR-Crops Research Institute, Kumasi, Ghana
autor
- CSIR-Crops Research Institute, Kumasi, Ghana
autor
- CSIR-Crops Research Institute, Kumasi, Ghana
autor
- CSIR-Crops Research Institute, Kumasi, Ghana
autor
- CSIR-Crops Research Institute, Kumasi, Ghana
- adu.aa56@gmail.com
autor
- CSIR-Crops Research Institute, Kumasi, Ghana
autor
- CSIR-Crops Research Institute, Kumasi, Ghana
Bibliografia
- 1. Ahmadi, M., Nabi Bidhendi, G., Torabian, A., Mehrdadi, N. 2018. Effects of nanobubble aeration in oxygen transfer efficiency and sludge production in wastewater biological treatment. J Adv. Environ Health Res, 6, 225–233. https://doi.org/10.22102/ JAEHR.2018.135459.1086
- 2. Akinyemi, O. 1988. Water quality and pond management. In A. M. Ajani (Ed.), Proceedings of the Nationwide Fish Farmers Workshop, 101–106.
- 3. Amponsah, S.K., Agodzo, S., Agbeko, E., Asante, E.O. 2021. Impact of tank geometry on production of African Catfish (Clarias gariepinus). African Journal of Agricultural Research, 17(1), 165–172. https://doi.org/10.5897/ajar2020.15239
- 4. Ansah, Y.B. 2014. Enhancing Profitability of Pond Aquaculture in Ghana through Resource Management and Environmental Best Management Practices.
- 5. Asare, E.A. 2022. Status of pharmaceuticals in the Korle Lagoon and their toxicity to non-target organisms. Ecotoxicology, 31(2), 299–311. https:// doi.org/10.1007/s10646-021-02507-1
- 6. Boyd, C.E., Tucker, C.S. 2014. Handbook for aquaculture water quality. Craftmaster Printers. Inc., Auburn Alabama, 439.
- 7. Chen, R.Z., Wong, M.H. 2016. Integrated wetlands for food production. In Environmental Research, 148, 429–442. https://doi.org/10.1016/j.envres.2016.01.007
- 8. Chen, Y., Zhang, Y., Li, Y., Liu, J. 2019. Nitrogen and phosphurus removal from simulated wastewater by taro (Colocasia esculenta) in a hydroponic system. Water Science and Technology, 80(4), 753-761.
- 9. Choudhary, A.K., Kumar, S. 2011. Constructed wetlands: An approach for wastewater treatment. Elixir, Pollution (37). https://www.researchgate.net/publication/215634574
- 10. Crab, R., Avnimelech, Y., Defoirdt, T., Bossier, P., Verstraete, W. 2007. Nitrogen removal techniques in aquaculture for a sustainable production. In Aquaculture, 270(1–4), 1–14). Elsevier. https://doi.org/10.1016/j.aquaculture.2007.05.006
- 11. Danquah, E.O., Frimpong, F., Yeboah, S., Tetteh, E.N., Weebadde, C., Ennin, S.A., Agyeman, K., Amankwaa-Yeboah, P., Akley, E.K., Hayford, P., Snapp, S. 2022. Pigeonpea (Cajanus cajan) and white yam (Dioscorea rotundata) cropping system: Improved resource use and productivity in Ghana. Annals of Agricultural Sciences, 67(1), 60–71. https://doi.org/10.1016/j.aoas.2022.05.001
- 12. De La Mora-Orozco, C., González-Acuña, I.J., Saucedo-Terán, R.A., Flores-López, H.E., RubioArias, H.O., Ochoa-Rivero, J.M. 2018. Removing organic matter and nutrients from pig farm wastewater with a constructedwetland system. International Journal of Environmental Research and Public Health, 15(5), 1031. https://doi.org/10.3390/ijerph15051031
- 13. Dwumfour-Asare, B. 2019. Onsite Treatment of Domestic Greywater Using Constructed Wetland in Ghana. 1–230.
- 14. EPA. 2021. Tres Rios Project Improves Water Quality. https://nepis.epa.gov/Exe/ZyPDF.cgi/30005UPS.PDF?Dockey=30005UPS.PDF
- 15. FAO. 2022. The State of World Fisheries and Aquaculture (SOFIA), FAO: Rome, 2022. In The State of World Fisheries and Aquaculture (SOFIA). https://openknowledge.fao.org/handle/20.500.14283/ cc0461en
- 16. Frimpong, F., Darkey, S.K., Dwamena, A.H., Tetteh, E.N., Duah, A., Amponsah, S.K. 2017. Evaluation of aquaponics-based food system effluents on the growth and yield of onion (Allium cepa L.). Ghana Science Association Research Seminar, College of Science, KNUST, Kumasi, Ghana, 12th April, 2017.
- 17. García, J., Rousseau, D.P.L., Morató, J., Lesage, E., Matamoros, V., Bayona, J.M. 2010. Contaminant removal processes in subsurface-flow constructed wetlands: A review. In Critical Reviews in Environmental Science and Technology 40(7), 561–661. https://doi.org/10.1080/10643380802471076
- 18. Ganga, R.R., Sridhar, S., Anjanyulu, Y. 2014. Removal of pollutants from textile industry effluent using sugarcane bagasse. Journal of Environmental Management, 144, 118–126.
- 19. Jokerst, A., Hollowed, M., Sharvelle, S., Roesner, L., Rowney, A.C. 2012. Graywater Treatment Using Constructed Wetlands. October, 76. www.epa.gov/gateway/science
- 20. Kadlec, R.H., Wallace, S.D. 2008. Treatment Wetlands Second Edition. In CRC Press (second edi). CRC Press.
- 21. Kurniawan, S.B., Abdullah, S.R.S., Imron, M.F., Ahmad, A., Mohd Said, N.S., Mohd Rahim, N.F., Mohammad Alnawajha, M., Abu Hasan, H., Othman, A.R., Purwanti, I.F. 2021. Potential of valuable materials recovery from aquaculture wastewater: An introduction to resource reclamation. In Aquaculture Research 52(7), 2954–2962. Blackwell Publishing Ltd. https://doi.org/10.1111/are.15180
- 22. Lu, J., Li, R., Wan, H., Ma, Q., Li, K., Zhu, D.Z., Feng, J., Yan, Z., Sun, G., Yu, J., Tang, X., Xu, H., Xue, J., Li, P. 2021. Dissolved oxygen transfer along falling water jets with developing surface disturbance. Journal of Hydro-Environment Research, 38, 129–136. https://doi.org/10.1016/j.jher.2021.03.001
- 23. Merino-Solís, M.L., Villegas, E., de Anda, J., LópezLópez, A. 2015. The effect of the hydraulic retention time on the performance of an ecological wastewater treatment system: An anaerobic filter with a constructed wetland. Water (Switzerland), 7(3), 1149–1163. https://doi.org/10.3390/W7031149
- 24. Minakshi, D., Sharma, P.K., Rani, A. 2022. Effect of filter media and hydraulic retention time on the performance of vertical constructed wetland system treating dairy farm wastewater. Environmental Engineering Research, 27(1). https://doi.org/10.4491/eer.2020.436
- 25. Nivala, J., Wallace, S., Headley, T., Kassa, K., Brix, H., van Afferden, M., Müller, R. 2013. Oxygen transfer and consumption in subsurface flow treatment wetlands. Ecological Engineering, 61, 544554. https://doi.org/10.1016/j.ecoleng.2012.08.028
- 26. Osei, A.R., Konate, Y., Abagale, F.K. 2019. Pollutant removal and growth dynamics of macrophyte species for faecal sludge treatment w i t h constructed wetland technology. Water Science and Technology, 80(6), 1145–1154. https://doi.org/10.2166/wst.2019.354
- 27. Qadir, M., Drechsel, P., Jiménez Cisneros, B., Kim, Y., Pramanik, A., Mehta, P., Olaniyan, O. 2020. Global and regional potential of wastewater as a water, nutrient and energy source. Natural Resources Forum, 44(1), 40–51. https://doi.org/10.1111/1477-8947.12187
- 28. Rahman, M.A., Hasegawa, H., Rahman M.M. 2011. Accumulation of arsenic and other heavy metals in food crops and possible human health risks in Bangladesh. Environmental Geochemistry and Health, 33(1), 71–83.
- 29. Saeed, T., Sun, G. 2012. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media. In Journal of Environmental Management, 112, 429–448. Academic Press. https://doi.org/10.1016/j.jenvman.2012.08.011
- 30. Schneider, O. 2010. The Netherlands: Best practices in managing ecosystem impacts in aquaculture through RAS technologies. In Advancing the Aquaculture Agenda 259–273. OECD. https://doi.org/10.1787/9789264088726-19-en
- 31. Smith, V.H., Tilman, G.D., Nekola, J.C. 1999. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution, 100(1–3), 179–196. https://doi.org/10.1016/S0269-7491(99)00091-3
- 32. United Nations. 2015. Transforming Our World: the 2030 Agenda for Sustainable Development United Nations United Nations Transforming Our World: the 2030 Agenda for Sustainable Development. United Nations, 41. https://sdgs.un.org/publications/transforming-our-world-2030-agendasustainable-development-17981
- 33. VSN International. 2011. GenStat Discovery 3rd Edition.
- 34. Vymazal, J., Zhao, Y., Mander, Ü. 2021. Recent research challenges in constructed wetlands for wastewater treatment: A review. Ecological Engineering, 169, 106318.
- 35. Wang, L., Zhang, Q., Liu Y. 2018. Removal of nutrients and organic matter from domestic wastewater by constructed wetlands planted with sugarcane. Ecological Engineering, 114, 185–192.
- 36. Water Resources Commission. 2003. Ghana Raw Water Quality Criteria and Guidelines, GRWQCG: Aquaculture Water Use – 5.
- 37. WHO. 2017. Drinking Water Parameter Cooperation Project - Quality of Water Intended for Human Consumption. World Health Organisation, Council Directive 98/83/EC, 1–228. http://ec.europa.eu/environment/water/water-drink/pdf/20171215_EC_project_report_final_corrected.pdf
- 38. Wu, H., Zhang, J., Ngo, H. H., Guo, W., Hu, Z., Liang, S., Fan, J., Liu, H. 2015. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. In Bioresource Technology 175, 594–601. Elsevier. https://doi.org/10.1016/j.biortech.2014.10.068
- 39. Zhang, H., Wang, X.C., Zheng, Y., Dzakpasu, M. 2023. Removal of pharmaceutical active compounds in wastewater by constructed wetlands: Performance and mechanisms. In Journal of Environmental Management 325, 116478). Academic Press. https://doi.org/10.1016/j.jenvman.2022.116478
- 40. Zhang, S.Y., Li, G., Wu, H.B., Liu, X.G., Yao, Y.H., Tao, L., Liu, H. 2011. An integrated recirculating aquaculture system (RAS) for land-based fish farming: The effects on water quality and fish production. Aquacultural Engineering, 45(3), 93–102. https://doi.org/10.1016/j.aquaeng.2011.08.001
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7c80078-cf2a-4e29-86c7-524510ad6d70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.