Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The study attempts to investigate the influence of severe plastic deformation (SPD in the hydrostatic extrusion (HE) process on the anisotropy of the structure and mechanical properties of the AA 6060 alloy. Material in isotropic condition was subjected to a single round of hydrostatic extrusion with three different degrees of deformation (ε= 1.23, 1.57, 2.28). They allowed the grain size to be fragmented to the nanocrystalline level. Mechanical properties of the AA 6060 alloy, examined on mini-samples, showed an increase in ultimate tensile strength (UTS) and yield strength (YS) as compared to the initial material. Significant strengthening of the material results from high grain refinement in transverse section, from »220 μm in the initial material to »300 nm following the HE process. The material was characterized by the occurrence of structure anisotropy, which may determine the potential use of the material. Static tensile tests of mini-samples showed »10% anisotropy of properties between longitudinal and transverse cross-sections. In the AA6060 alloy, impact anisotropy was found depending on the direction of its testing. Higher impact toughness was observed in the cross-section parallel to the HE direction. The results obtained allow to analyze the characteristic structure created during the HE process and result in more efficient use of the AA 6060 alloy in applications.
Słowa kluczowe
Rocznik
Tom
Strony
709--717
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
- Institute of High Pressure Physics of the Polish Academy of Sciences UNIPRESS, Sokołowska 29/37, 01-142 Warsaw, Poland
autor
- Institute of High Pressure Physics of the Polish Academy of Sciences UNIPRESS, Sokołowska 29/37, 01-142 Warsaw, Poland
autor
- Institute of High Pressure Physics of the Polish Academy of Sciences UNIPRESS, Sokołowska 29/37, 01-142 Warsaw, Poland
autor
- Institute of High Pressure Physics of the Polish Academy of Sciences UNIPRESS, Sokołowska 29/37, 01-142 Warsaw, Poland
autor
- Institute of High Pressure Physics of the Polish Academy of Sciences UNIPRESS, Sokołowska 29/37, 01-142 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw, Poland
Bibliografia
- [1] J. Hirsch, “Aluminium alloy for automotive application”, Mater. Sci. Forum. 242, 33–50 (1997).
- [2] I.J. Polmear, “Light alloys: from traditional alloys to nano crystals”, 4th Edition, Butterworth-Heinemann, Burlington, (2006).
- [3] R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, “Bulk nanostructured materials from severe plastic deformation”, Prog. Mater. Sci. 45(2), 103‒190 (2000).
- [4] I.J. Beyerlein and L.S. Tóth. “Texture evolution in equal-channel angular extrusion”, Prog. Mater. Sci. 54, 427–510 (2009).
- [5] A. Vorhauer and R. Pippan, “On the homogeneity of deformation by high pressure torsion”, Scripta Mater. 51, 921–925 (2004).
- [6] P. Kral, J. Dvorak, V. Sklenicka, T. Masuda, Z. Horita, K. Kucha-rova, M. Kvapilova, and M. Svobodova, “Microstructure and creep behaviour of P92 steel after HPT”, Mater. Sci. Eng. A 723, 287‒295 (2018).
- [7] S. Lee, Y. Saito, T. Sakai, and H. Utsunomiya, “Microstructures and mechanical properties of 6061 aluminum alloy processed by accumulative roll-bonding”, Mater. Sci. Eng. A 325, 228–235 (2002).
- [8] B. Cherukuri, T.S. Nedkova, and R. Srinivasan, “A comparison of the properties of SPD processed AA-6061 by equal-channel angular pressing, multi-axial compressions/forgings and accumulative roll bonding”, Mater. Sci. Eng. A 410, 394–397 (2005).
- [9] M. Richert, H.J. McQueen, and J. Richert, “Microband formation in cyclic extrusion compression of aluminum”, Can. Metall. Quart. 37(5), 449‒457 (1998).
- [10] M. Richert, H. Petryk, and S. Stupkiewicz, “Grain refinement in AlMgSi alloy during cyclic extrusion – compression: experiment and modelling”, Arch. Metall. Mater. 52(1), 49‒54 (2007).
- [11] W. Pachla, M. Kulczyk, A. Swiderska-Środa, M. Lewandowska, H. Garbacz, A. Mazur, and K.J. Kurzydłowski, “Nanostructuring of metals by hydrostatic extrusion”, Proc. of 9th Int. Conf. on Metal Forming EMRS 2006, Eds. N. Juster, A. Rosochowski, Publ. House Akapit, 535‒538 (2006).
- [12] M. Kulczyk, S. Przybysz, J. Skiba, and W. Pachla, “Severe plastic deformation induced in Al, Al-Si, Ag and Cu by hydrostatic extrusion”, Arch. Metall. Mater. 59, 59‒64 (2014)
- [13] E.O. Hall, “The deformation and ageing of mild steel: III Discussion of results”, Proc. Phys. Soc. B 64(9), 747‒753 (1951).
- [14] N.J. Petch, “The cleavage strength of polycrystals”, J. Iron Steel Inst. 174, 25–28 (1953).
- [15] M. Lewandowska and K.J. Kurzydłowski, “Recent development in grain refinement by hydrostatic extrusion”, J. Mater. Sci. 43(23), 7299–7306 (2008).
- [16] L. Olejnik, M. Kulczyk, W. Pachla, and A. Rosochowski, “Hydrostatic extrusion of UFG aluminium”, Int. J. Mater. Form. 2, 621‒624 (2009).
- [17] W. Pachla, M. Kulczyk, J. Smalc-Koziorowska, M. Wróblewska, J. Skiba, S. Przybysz, and M. Przybysz, “Mechanical proper-ties and microstructure of ultrafine grained commercial purity aluminium prepared by cryohydrostatic extrusion”, Mater. Sci. Eng. A 695, 178‒192 (2017).
- [18] M. Kulczyk, B. Zysk, M. Lewandowska, and K.J. Kurzydłowski, “Grain refinement in CuCrZr by SPD processing”, Phys. Status Solidi A 207, 1136‒1138 (2010).
- [19] M. Kulczyk, J. Skiba, S. Przybysz, W. Pachla, P. Bazarnik, and M. Lewandowska, “High strength silicon bronze (C65500) obtained by hydrostatic extrusion”, Arch. Metall. Mater. 57(3), 859‒862 (2012).
- [20] W. Pachla, M. Kulczyk, J. Smalc-Koziorowska, S. Przybysz, M. Wróblewska, J. Skiba, and M. Przybysz, “Enhanced strength and toughness in ultra-fine grained 99.9% copper obtained by cryohydrostatic extrusion”, Mater. Charact. 141, 375‒387 (2018).
- [21] W. Pachla, M. Kulczyk, M. Sus-Ryszkowska, A. Mazur, and K.J. Kurzydłowski, “Nanocrystalline titanium produced by hydrostatic extrusion”, J. Mater. Proc. Tech. 205, 173‒182 (2008).
- [22] W. Pachla, M. Kulczyk, S. Przybysz, J. Skiba, K. Wojciechowski, M. Przybysz, K. Topolski, A. Sobolewski, and M. Charkiewicz, “Effect of severe plastic deformation realized by hydrostatic extrusion and rotary swaging on the properties of CP Ti grade 2”, J. Mater. Process. Tech. 221, 255‒268 (2015).
- [23] J. Budniak, M. Lewandowska, W. Pachla, M. Kulczyk, and K.J. Kurzydłowski, “The influence of hydrostatic extrusion on the properties of an austenitic stainless steel”, Solid State Phe-nomen 114, 57‒62 (2006).
- [24] W. Pachla, J. Skiba, M. Kulczyk, S. Przybysz, M. Przybysz, M. Wróblewska, R. Diduszko, R. Stępniak, J. Bajorek, M. Radom-ski, and W. Fąfara, “Nanostructurization of 316L type austenitic stainless steels by hydrostatic extrusion”, Mater. Sci. Eng. A 615, 116‒127 (2014).
- [25] M. Kulczyk, W. Pachla, A. Mazur, R. Diduszko, H. Garbacz, M. Lewandowska, W. Łojkowski, and K.J. Kurzydłowski, “Micro-structure and mechanical properties of nickel deformed by hydro-static extrusion”, Mater. Sci. 23, 840‒846 (2005).
- [26] M. Kulczyk, W. Pachla, A. Mazur, M. Suś-Ryszkowska, N. Krasil-nikov, and K.J. Kurzydłowski, “Producing bulk nanocrystalline materials by combined hydrostatic extrusion and equal-channel angular pressing”, Mater Sci+ 25, 991‒999 (2007).
- [27] E.C. Moreno-Valle, W. Pachla, M. Kulczyk, B. Savoini, M.A. Monge, C. Ballesteros, and I. Sabirov, “Anisotropy of uniaxial and bi-axial deformation behaviour of pure Titanium after hydrostatic extrusion”, Mater. Sci. Eng. A 588, 1‒7 (2013).
- [28] M. Kulczyk, W. Pachla, J. Godek, J. Smalc-Koziorowska, J. Skiba, S. Przybysz, M. Wróblewska, and M. Przybysz, “Improved com-promise between the electrical conductivity and hardness of the thermo-mechanically treated CuCrZr alloy”, Mater. Sci. Eng. A 724, 45–52 (2018).
- [29] W. Truszkowski and J. Kloch,”New aspects of plastic anisotropy in materials”, Bull. Pol. Ac.: Tech. 46(3), 289‒300 (1998).
- [30] M. Tajally, Z. Huda, and H.H. Masjuki, “A comparative analysis of tensile and impact-toughness behavior of cold-worked and annealed 7075 aluminum alloy”, Int. J. Impact Eng. 37(4), 425–432 (2010).
- [31] P. Das, R. Jayaganthan, and I.V. Singh, “Tensile and impact-tough-ness behaviour of cryorolled Al 7075 alloy”, Mater. Design. 32, 1298–1305 (2011).
- [32] D.R. Fang, YZ. Tian, Q.Q. Duan, S.D. Wu, Z.F. Zhang, N.Q. Zhao, and J.J. Li, “Effects of equal channel angular pressing on the strength and toughness of Al–Cu alloys”, J. Mater. Sci. 46, 5002‒5008 (2011).
- [33] K.G. Russell and M. Ashby, “Slip in aluminum crystals containing strong, plate-like particles”, Acta Metall. Mater. 18, 891‒901 (1970).
- [34] M. Khadyko, S. Dumoulin, G. Cailletaud, and O.S. Hopperstad, “Latent hardening and plastic anisotropy evolution in AA 6060 aluminium alloy”, Int. J. Plasticity 76, 51‒74 (2016).
- [35] T. Wejrzanowski, W.L. Spychalski, K. Różniatowski, and K.J. Kurzydłowski, “Image based analysis of complex micro-structures of engineering materials”, Int. J. Appl. Math. Comp. 18, 33–39 (2008).
- [36] W. Pachla, J. Skiba, M. Kulczyk, and M. Przybysz, “High-pressure equipment for cold severe plastic deformation working of materials”, Met. Form. XXVI(4), 283–306 (2015).
- [37] W. Pachla, M. Kulczyk, A. Mazur, and M. Sus-Ryszkowska, “UFG and nanocrystalline microstructures produced by hydro-static extrusion of multifilament wires”, Int. J. Mater. Res. 100, (2009) 984‒990 (2009).
- [38] I. Alexander, S.S. Pavlov, and M. Kiritani, “Effective temperature rise during propagation of shock wave and high-speed deformation in metals”, Mater. Sci. Eng. A 350, 245–250 (2003).
- [39] F.K. Yan, G.Z. Liu, N.R. Tao, and K. Lu, “Strength and ductility of 316L austenitic stainless steel strengthened by nanoscale twin bundles”, Acta Metall. Mater. 60, 1059–1071 (2012).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7c344e6-dd92-4d6b-8ab8-5d82c4c180eb