Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Phosphorus is an element necessary for the growth of plants. As phosphate rock gets depleted, it becomes an increasingly scarce resource. Therefore, it seems necessary to implement simple methods of cheap and effective phosphorus recovery from waste. The ashes of municipal sewage sludge and bottom sediments constitute particularly valuable sources of phosphorus. However, these materials usually carry significant amounts of pollutants, including heavy metals. Optimization of ash phosphorus sequential extraction methods from a thermal conversion of sewage sludge and bottom sediments allows to select an effective and simple technology of phosphorus recovery, while maintaining low heavy metal pollution, which is one of the main restrictions in use of ashes. Determination of an amount of bioavailable phosphorus is therefore a basis for estimation of the possibility of using it from waste. Extraction using the Golterman method or shaking out with calcium lactate or Trougs reagent indicates that the ashes from sewage sludge and bottom sediments are rich sources of bioavailable phosphorus, which could find use under field conditions as a viable alternative to fertilizers containing fossil phosphorus.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
88--94
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
- Department of Land Protection, Opole University, ul. Oleska 22, 45-052 Opole, Poland
autor
- Institute of Environmental Engineering of the Polish Academy of Sciences, ul. Skłodowskiej-Curie 4, 41-819 Zabrze, Poland
autor
- Institute of Ceramics and Building Materials, ul. Oswiecimska 21, 45-641 Opole, Poland
autor
- Institute of Ceramics and Building Materials, ul. Oswiecimska 21, 45-641 Opole, Poland
autor
- Department of Land Protection, Opole University, ul. Oleska 22, 45-052 Opole, Poland
Bibliografia
- 1. Adam C., Peplinski B., Michaelis M., Kley G., Simon F.-G. 2009. Thermochemical treatment of sewage sludge ashes for phosphorus recovery. Waste Management 29: 1122-1128.
- 2. Arnout S., Nagels E. Modelling thermal phosphorus recovery from sewage sludge Ash 2016. CALPHAD: ComputerCouplingofPhaseDiagramsandThermochemistry55, 26-31 http://dx.doi.org/10.1016/j.calphad. 2016.06.008
- 3. Atienza-Martınez M., Gea G., Arauzo J., Kersten S.R.A., Maarten A., Kootstra J.2014. Phosphorus recovery from sewage sludge char Ash. Biomass and bioenergy 65, 42-50. doi.org/10.1016/j.biombioe.2014.03.058
- 4. Bednarek W., ReszkaR. 2007. The effect of liming and fertilization with various nitrogen forms on the content of available forms and mineral fractions of phosphorus in the soil. Annales Universitatis Mariae Curie – Skłodowska Lublin – Polonia Vol. Lxii (2) Sectio E 234-242 (in Polish)
- 6. Bezak-Mazur E., Stoińska R. 2013. Speciation of phosphorus in wastewater sediments from selected wastewater treatment plant. Ecol Chem Eng A. 20(4-5): 503-514. DOI: 10.2428/ecea.2013.20(04)047
- 7. Bień J.D. 2012. Utilisation of Sewage Sludge in Poland by Thermal Method. Inżynieria i Ochrona Środowiska 15(4): 439-449 (in Polish)
- 8. Bøen A., Haraldsen T.K., Krogstad T. 2013. Large differences in soil phosphorus solubility after the application of compost and biosolids at high rates. Acta Agriculturae Scandinavica, Section B – Soil & Plant Science. DOI: 10.1080/09064710.2013.801508
- 9. Chiu S.W., Gao T., Chan,C.S.S., Ho C.K.R. 2009. Removal of spilled petroleum in industrial soils by spent compost of mushroom Pleurotus pulmonarius. Chemosphere 75 837-842
- 10. Ciesielczuk T., Rosik-Dulewska Cz., Kusza G. 2016. Extraction of phosphorus from sewage sludge ash and sewage sludge – problem analysis. Polish Journal for Sustainable Development 20, 21-28, DOI: 10.15584/pjsd.2016.20.3 (in Polish)
- 11. Czechowska-Kosacka A. 2016. Phosphorus Speciation Forms in Sewage Sludge from Selected Wastewater Treatment Plants. Annual Set The Environment Protection 18: 158-168
- 12. Ebbers B., Ottosen L.M., Jensen P.E. 2015. Comparison of two different electrodialytic cells for separation of phosphorus and heavy metals from sewage sludge ash. Chemosphere 125: 122-129.
- 13. Golterman H.L. Hydrobiologia. 1996. 335(1);87-95. DOI: 10.1007/BF00013687
- 14. Guedes P., Couto N., Ottosen L.M., Ribeiro A.B. 2014. Phosphorus recovery from sewage sludge ash through an electrodialytic process. Waste Management 34: 886-892.
- 15. Guedes P., Couto N., Ottosen L.M., Kirkelund G.M., Mateus E., Ribeiro A.B. 2016. Valorisation of ferric sewage sludge ashes: Potential as a phosphorus source. Waste Management 52: 193-201.
- 16. Havukainen J., Nguyen M.T., Hermann L., Horttanainen M., Mikkilä M. Deviatkin I., Linnanen L. 2016. Potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment. Waste Management 49, 221-229.
- 17. Herzel H., Krüger O., Hermann L., Adam Ch. 2016. Sewage sludge ash – A promising secondary phosphorus source for fertilizer production. Science of the Total Environment 542, 1136-1143.
- 18. Hukari S., Hermann L., Nättorp A. 2016. From wastewater to fertilisers – Technical overview and critical review. Science of the Total Environment 542, 1127-1135.
- 19. Kruger O., Adam Ch. 2015. Recovery potential of German sewage sludge Ash. Waste Management 45, 400-406.
- 20. Krupa-Żuczek K., Podraza Z., Wzorek Z. 2012 Extraction of phosphorus from sewage sludge ash and sewage sludge – problem analysis. Chemistry. Technical Transactions 16, 65-70 (in Polish)
- 21. Mazur Z., Radziemska M., Tomaszewska Z., Świątkowski Ł. 2013. Effect of sodium chloride salinization on the seed germination of selected vegetable plants. Scientific Review – Engineering and Environmental Sciences 62, 444-453.
- 22. Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular Nr 939, US Gov Print Office, Washington, DC, pp 1-19.
- 23. Petzet S., Peplinski B., Cornel P. 2012. On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both. water research 46, 3769-3780.
- 24. Poluszyńska J. 2013. Assessment of contamination possibility of soil by polycyclic aromatic hydrocarbons (PAHs) contained in the fly ash from power boilers. Scientific Works of Institute of Ceramics and Building Materials 12, 60-77 (in Polish)
- 25. Poluszyńska J., Ślęzak E. 2015. Phosphorus from municipal sewage sludge. Scientific Works of Institute of Ceramics and Building Materials 22, 44-55 (in Polish)
- 26. Rosik-Dulewska Cz., Karwaczyńska U., Głowala K., Robak J. 2008. Elution of heavy metals from granulates produced from municipal sevage deposits and fly-ash of hard and brown in the aspect of recycling for fertilization purposes. Archives of Environment Protection 34( 2), 63-71.
- 27. Rosik-Dulewska Cz., Nocoń K., Karwaczyńska U. 2016 Wytwarzanie granulatu z komunalnych osadów ściekowych i popiołów lotnych w celu ich przyrodniczego (nawozowego) odzysku (in Polish). Instytut Podstaw Inżynierii Środowiska Polskiej Akademii Nauk, Prace i Studia 87, pp. 187.
- 28. Seshadri B., Bolan N., Choppala G., Naidu R. 2013. Differential effect of coal combustion products on the bioavailability of phosphorus between inorganic and organic nutrient sources. Journal of Hazardous Materials 261 (2013) 817-825, http://dx.doi.org/10.1016/j.jhazmat.2013.04.051.
- 29. Shiba N.C., Ntuli F. 2016. Extraction and precipitation of phosphorus from sewage sludge. Waste Management http://dx.doi.org/10.1016/j.wasman.2016.07.031.
- 30. Statistical Yearbook of Environmental Protection 2017. Central Statistical Office Warszawa 2017.
- 31. Strzebońska M., Kostka A., Helios-Rybicka E., Jarosz-Krzemińska E. 2015. Effect of Flooding on Heavy Metals Contamination of Vistula Floodplain Sediments in Cracow; Historical Mining and Smelting as the Most Important Source of Pollution. Polish J. of Environ. Stud., 34, (3), 1317-1326, doi 10.15244/pjoes/33202
- 32. Szaja A. 2013. Phosphorus Recovery from Sewage Sludge via Pyrolysis. The Annual Set the Environment Protection 15, 361-370.
- 33. Szpak P., Millaire J.F., White Ch.D., Longstaffe F.J. 2012. Influence of seabird guano and camelid dung fertilization on the nitrogenisotopic composition of field-grown maize (Zea mays). Journal of Archaeological Science 39, 3721-3740.
- 34. Tujaka A., Gosek S., Gałązka R. 2006. Estimation of Hedley’s fractionation method applicability to the determination of changes in phosphorus fractions in soil Polish Journal of Agronomy 2011, 6, 52-57 (in Polish)
- 35. van Vuuren D.P., Bouwman A.F., Beusen, A.H.W. 2010. Phosphorus demand for the 1970-2100 period: A scenario analysis of resource depletion. Global Environmental Change 20(3), 428-439. doi:10.1016/j.gloenvcha.2010.04.004
- 36. Weigand H., Bertau M., Hübner W., Bohndick F., Bruckert A. 2013. RecoPhos: Full-scale fertilizer production from sewage sludge Ash. Waste Management 33, 540-544.
- 37. Wzorek Z. 2008. The pfosphorus compounds recovery from thermally treated waste and its use as substitute of natural phosphorus raw materials. Monogrph 356 Kraków 2008. (in Polish)
- 38. Wzorek Z., Jodko M., Gorazda K., Rzepecki T. 2006. Extraction of phosphorus compounds from ashes from thermal processing of sewage sludge. Journal of Loss Prevention in the Process Industries 19, 39-50.
Uwagi
Błędna numeracja w bibliografii.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7b82a98-a517-4088-ad4b-81dc2ecefe17