PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance of static positioning for medium distances based on data from a virtual reference station and ASG-PL network

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of a network of reference stations instead of a single reference station allows the modelling of some systematic errors in a region and allows a user to increase the distance between the rover receiver and reference stations. In some countries, GPS reference stations exist and GPS observations are available for users in real-time mode and in postprocessing. Observations from several GPS reference stations in a regional network enable modelling spatially-correlated errors and their modelling on an epoch-by-epoch and satelliteby-satellite basis. As a result, observations of a virtual reference station can be created at a rover’s approximate position and its observations can be used in the precise baseline positioning of the rover. This paper presents the performance of the static positioning of a rover station, its quality and reliability for two different baselines. Single-baseline and network static solutions are presented and compared. Network solutions are based on data from a virtual reference station (VRS) obtained by the Wasoft/Virtuall software. In both cases, the same strategy of ambiguity resolution was used. These approaches have been tested with the use of 24-hour GPS data from the Polish Active Geodetic Network (ASG-PL). The data from three reference stations with medium-range separation were used in the process of generating VRS data. GPS data of the rover station were divided into 20, 10 and 5-min. sessions with a sampling interval of 5 sec. Practical calculations and analyses of horizontal and vertical accuracy of coordinates clearly show the improvement of static positioning in terms of time observation span and ambiguity reliability.
Rocznik
Strony
33--42
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
  • University of Warmia and Mazury Chair of Satellite Geodesy and Navigation 5 Heweliusza St., 10-724 Olsztyn, Poland
Bibliografia
  • Ashtech and Spectra Precision Terrasat GmbH Germany, (1998). Ashtech Office Suite for Survey, User’s Manual, USA.
  • Euler H.J., Keenan C.R., Zebhauser B.E., Wübbena G. (2001). Study of Simplified Approach in Utilizing Information from Permanent Reference Station Arrays, Paper presented at ION GPS 2001, Salt Lake City, Utach, pp. 379-391.
  • Fotopoulos G., Cannon M.E. (2001). An Overview of Multi-Reference Station Methods for Cm-Level Positioning, GPS Solutions, Vol. 4,No. 3, pp. 1-10.
  • Grejner-Brzezińska D.A. Kashani I., Wielgosz P. (2005). On accuracy and reliability of instantaneous network RTK as a function of network geometry, station separation, and data processing strategies, GPS Solution, Vol. 9, N. 3, pp. 212-225.
  • Kryński J., Rogowski J.B., Zieliński J.B. (2003). National Report of Poland to EUREF 2003, EUREF Symposium of the IAG Subcommission for Eurpoe (EUREF) held in Toledo, Spain, 4-7 June 2003, EUREF publication No 12, Mitteilungen des Bundesamtes für Kartographie und Geodäsie, Band 33, Frankfurt am Main. pp. 264-268.
  • Lachapelle G., Alves P., Fortes L.P., Cannon M.E., Townsend B. (2000): DGPS RTK Positioning Using a Reference Network, Proceedings of GPS2000 (Session C3, Salt Lake City, 19-22 September), The Institute of Navigation, Alexandria, VA, pp. 1165-1171.
  • Lachapelle G., Alves P. (2002): Multiple Reference Station Approach: Overview and Current Research, , Journal of Global Positioning Systems, Vol. 1, No 2, pp 133-136.
  • Landau H., Vollath U., Chen X. (2002). Virtual Reference Stations Systems, Journal of Global Positioning Systems, Vol. 1, No 2, pp. 137-143.
  • Raquet J. (1997). A New Approach to GPS Carrier Phase Ambiguity Resolution Using a Reference Receiver Network, Proceedings of National Technical Meeting, Santa Monica, January 14-16), The Institute of Navigation, Alexandria, VA, pp. 357-366.
  • Raquet J. (1999). Development of a Method for Kinematic GPS Carrier Phase Ambiguity Resolution Using Multiple Reference Receiver, UCGE No 20116, (PhD thesis).
  • Rizos C. (2002). Network RTK Research and Implementation - A Geodetic Perspective, Journal of Global Positioning Systems, Vol. 1, No 2, pp. 144-150.
  • Wanninger L. (1995). Improved Ambiguity Resolution by Regional Differential Modelling of the Ionosphere, Proceedings of ION GPS-95, Palm Springs, Sep. 12-15, pp 55-62.
  • Wanninger L. (1997). Real-Time Differential GPS-Error Modelling in Regional Reference Station Networks in: Brunner, F.K. (Hg.): Advances in Positioning and Reference Frames, Proceedings of the IAG Scientific Assembly, Rio de Janeiro, Brazil, pp. 86-92.
  • Wanninger L. (1999). The Performance of Virtual Reference Stations in Active Geodetic GPS-Networks under Solar Maximum Conditions, Proc. of ION GPS 99, Nashville TN, pp. 1419-1427.
  • Wanninger L. (2002). Virtual Reference Stations for Centimeter-Level Kinematic Positioning, Proc. of ION GPS 02, Portland, Oregon, pp.1400-1407.
  • Wanninger L. (2004). Ionospheric Disturbance Indices for RTK and Network RTK Positioning, Proc. of ION GNSS 2004, Long Beach, CA, pp. 2849-2854.
  • Wübbena G., Bagge A., Seeber G., Böder V., Hankemeier P. (1996). Reducing Distance Dependent Errors for Real-Time Precise DGPS Applications by Establishing Reference Station Networks, Proceedings of the International Technical Meeting, ION GPS-96, Kansas City, Missouri, pp. 1845-1852.
  • Xu G. (2002). A General Criterion of Integer Ambiguity Search, Journal of Global Positioning Systems, Vol. 1, No 2, pp. 122-131.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7b69fa8-39e7-4fb5-a53e-1c8b8aa11624
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.