PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Migration of pollutants in porous soil environment

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Migracja zanieczyszczeń w porowatym ośrodku gruntowym
Języki publikacji
EN
Abstrakty
EN
Landfill leachate makes a potential source of ground water pollution. Municipal waste landfill substratum can be used for removal of pollutants from leachate. Model research was performed with use of a sand bed and artificially prepared leachates. Effectiveness of filtration in a bed of specific thickness was assessed based on the total solids content. Result of the model research indicated that the mass of pollutants contained in leachate filtered by a layer of porous soil (mf) depends on the mass of pollutants supplied (md). Determined regression functions indicate agreement with empirical values of variable m′f. The determined regression functions allow for qualitative and quantitative assessment of influence of the analysed independent variables (m′d, l, ω) on values of mass of pollutants fl owing from the medium sand layer. Results of this research can be used to forecast the level of pollution of soil and underground waters lying in the zone of potential impact of municipal waste landfill.
PL
Odcieki składowiskowe stanowią potencjalne zanieczyszczenie wód gruntowych. Podłoże składowiska odpadów komunalnych może służyć do usuwania zanieczyszczeń zawartych w odciekach. Badania modelowe przeprowadzono z wykorzystaniem złoża piaskowego i sztucznie przygotowanych odcieków. Skuteczność filtracji złoża o określonej miąższości oceniano na podstawie zawartości suchej pozostałości. Wyniki przeprowadzonych badań modelowych wykazały, że o masie zanieczyszczeń zawartych w odcieku, filtrowanym przez warstwę gruntu porowatego (mf) decyduje masa doprowadzonych zanieczyszczeń (md), intensywność doprowadzonego odcieku (ω) oraz miąższość warstwy (l). Wyznaczone funkcje regresji wykazują, zgodność z liniowym modelem empirycznych wartości zmiennej m′f. Wyznaczone funkcje regresji pozwalają na oszacowanie jakościowego i ilościowego wpływu analizowanych zmiennych niezależnych (m′d, l, ω) na wartości masy zanieczyszczeń wypływających z warstwy piasku średniego. Wyniki tych badań mogą służyć do prognozowania stopnia zanieczyszczenia gruntu oraz wód podziemnych zalegających w strefie potencjalnego oddziaływania składowiska odpadów komunalnych.
Rocznik
Strony
87--95
Opis fizyczny
Bibliogr. 40 poz., tab., wykr.
Twórcy
  • Koszalin University of Technology, Poland Faculty of Civil Engineering, Environmental and Geodetic Science, Department Waste Management
autor
  • Koszalin University of Technology, Poland Faculty of Civil Engineering, Environmental and Geodetic Science, Department Waste Management
Bibliografia
  • [1]. Abdelaal, F.B., Rowe, R.K. & Islam, M.Z. (2014). Effect of leachate composition on the long-term performance of a HDPE geomembrane, Geotextiles and Geomembranes, 42, pp. 348–362.
  • [2]. Bedient, P., Springer, N., Baca, E., Bouvette, T., Hutchins, S. & Tomson, M. (1983). Ground-water transport from wastewater infiltration, Journal of Environmental Engineering, 109, 2, pp. 485–501.
  • [3]. Brun, A. & Engesgaard, P. (2002). Modelling of transport and biogeochemical processes in pollution plumes: literature review and model development, Journal of Hydrology, 256, pp. 211–227.
  • [4]. Castrillón, L., Fernández-Nava, Y., Ulmanu, M., Anger, I. & Marañón, E. (2010). Physico-chemical and biological treatment of MSW landfill leachate, Waste Management, 30, pp. 228–235.
  • [5]. Cooke, A.J., Rowe, R.K. & Rittmann, B.E. (2005). Modelling species fate and porous media effects for landfill leachate flow, Canadian Geotechnical Journal, 42, pp. 1116–1132.
  • [6]. Cuevas, J., Ruiz, A. I., de Soto, I. S., Sevilla, T., Procopio, J. R., Da Silva, P., Gismera, M. J., Regadío, M., Sánchez Jiménez, N., Rodríguez Rastrero, M. & Leguey, S. (2012). The performance of natural clay as a barrier to the diffusion of municipal solid waste landfill leachates, Journal of Environmental Management, 95, pp. S175–S181.
  • [7]. Den Boer, E., Jędrczak, A., Kowalski, Z., Kulczycka, J. & Szpadt, R. (2010). A review of municipal solid waste composition and quantities in Poland, Waste Management, 30, pp. 369–377.
  • [8]. Ghosh, P., Swati, & Thakur, I.S. (2014). Enhanced removal of COD and color from landfill leachate in a sequential bioreactor, Bioresource Technology, 170, pp. 10–19.
  • [9]. Ghosh, S., Mukherjee, S., Al-Hamdan, A.Z. & Reddy, K.R. (2013). Efficacy of fine-grained soil as landfill liner material for containment of chrome tannery sludge, Geotechnical and Geological Engineering, 31, pp. 493–500.
  • [10]. Islam, J. & Singhal, N. (2004). A laboratory study of landfill leachate transport in soils, Water Research, 38, pp. 2035–2042.
  • [11]. Janowska, B. & Szymański, K. (2009). Transformation of selected trace elements during the composting process of sewage sludge and municipal solid waste, Fresenius Environmental Bulletin, 18, 7, pp. 1110–1117.
  • [12]. Kjeldsen, P., Barlaz, M.A., Rooker, A. P., Baun, A., Ledin, A. & Christensen, T.H. (2002). Present and Long-Term Composition of MSW Landfill Leachate: A Review, Environmental Science and Technology, 32, 4, pp. 297–336.
  • [13]. Koda, E., Wiencław, E. & Martelli, L. (2009). Transport modelling and monitoring research use for efficiency assessment of vertical barrier surrounding old sanitary landfill, Annals of Warsaw University of Life Sciences – SGGW Land Reclamation, 41, pp. 41–48.
  • [14]. Lacerda, C.V., Ritter, E., da Costa Pires, J.A. & de Castro, J.A. (2014). Migration of inorganic ions from the leachate of the Rio das Ostras landfill: A comparison of three different configurations of protective barriers, Waste Management, 34, pp. 2285–2291.
  • [15]. Lagaly, G., Ogawa, M. & Dekany, I. (2006). Clay mineral – organic interaction. In: Handbook of clay science, Bergaya, F., Theng, B.K.G. & Lagaly, G. (Eds.), Elsevier, Amsterdam, pp. 309–377.
  • [16]. Li, Y., Li, J., Chen, S. & Diao, W. (2012). Establishing indices for groundwater contamination risk assessment in the vicinity of hazardous waste landfills in China, Environmental Pollution, 165, pp. 77–90.
  • [17]. Liu, Z.J., Li, X.K. & Tanga, L.Q. (2010). The numerical simulation of coupling behavior of soil with chemical pollutant effects, AIP Conference Proceedings, 1233, 1, pp. 690–695.
  • [18]. Luszniewicz, A. & Słaby, T. (2009). Statistics with computer package of STATISTICA PL. Theory and Applications. CH Beck, Warszawa 2009. (in Polish)
  • [19]. Melnyk, A., Kuklińska, K., Wolska, L. & Namieśnik, J. (2014). Chemical pollution and toxicity of water samples from stream receiving leachate from controlled municipal solid waste (MSW) landfill, Environmental Research, 135, pp. 253–261.
  • [20]. Nayak, S., Sunil, B.M. & Shrihari, S. (2007). Hydraulic and compaction characteristics of leachate-contaminated lateritic soil, Engineering Geology, 94, 3–4, 2, pp. 137–144.
  • [21]. Pieczykolan, B., Płonka, I., Barbusiński, K. & Amalio-Kosel, M. (2013). Comparison of landfill leachate treatment efficiency using the advanced oxidation processes, Archives of Environmental Protection, 39, 2, pp. 107–115.
  • [22]. Regadío, M., Ruiz, A.I., de Soto, I.S., Rodriguez Rastrero, M., Sánchez, N., Gismera, M.J., Sevilla, M.T., da Silva, P., Rodríguez Procopio, J. & Cuevas, J. (2012). Pollution profiles and physicochemical parameters in old uncontrolled landfills, Waste Management, 32, pp. 482–497.
  • [23]. Renou, S., Givaudan, J.G., Poulain, S., Dirassouyan, F. & Moulin, P. (2008). Landfill leachate treatment: Review and opportunity, Journal of Hazardous Materials, 150, pp. 468–493.
  • [24]. Reyes-López, J.A., Ramírez-Hernández, J., Lázaro-Mancilla, O., Carreón-Diazcontia, C. & Martín-Loeches Garrido, M. (2008). Assessment of groundwater contamination by landfill leachate: A case in México, Waste Management, 28, pp. S33–S39.
  • [25]. Rosqvist, H. & Destouni, G. (2000). Solute transport through preferential pathways in municipal solid waste, Journal of Contaminant Hydrology, 46, pp. 39–60.
  • [26]. Schiopu, A.M. & Gavrilescu, M. (2010). Options for the treatment and management of municipal landfill leachate: common and specific, Clean: Soil, Air, Water, 38, 12, pp. 1101–1110.
  • [27]. Siebielska, I. (2014). Comparison of changes in selected polycyclic aromatic hydrocarbons concentration during the composting and anaerobic digestion process of municipal waste and sewage sludge mixtures, Water Science and Technology, 70, 1, pp. 1617–1624.
  • [28]. Siebielska, I. & Sidełko, R. (2015). Polychlorinated biphenyl concentration changes in sewage sludge and organic municipal waste mixtures during composting and anaerobic digestion, Chemosphere, 126, pp. 88–95.
  • [29]. Suchowska-Kisielewicz, M. & Jędrczak, A. (2008). The chemical composition of leachate from municipal solid and mechanical biological treatment wastes. In: Management of pollutant emission from landfills and sludge, Pawłowska, M. & Pawłowski, L. (Eds.), Taylor & Francis, London, pp. 177–186.
  • [30]. Szymański, K. & Nowak, R. (2012). Transformations of leachate as a result of technical treatment at municipal waste landfills, Annual Set The Environmental Protection, 14, pp. 337–350. (in Polish)
  • [31]. Szymański, K., Sidełko, R., Janowska, B. & Siebielska I. (2007). Monitoring of waste landfills, Zeszyty Naukowe Wydziału Budownictwa i Inżynierii Środowiska, 23, pp. 75–133. (in Polish).
  • [32]. Tałałaj, I.A. & Dzienis, L. (2007). Influence of leachate on quality of underground waters, Polish Journal of Environmental Studies, 16, 1, pp. 139–144.
  • [33]. Szymański, K. & Siebielska, I. (2000). Evaluation of groundwater pollution: analytical problems, Ochrona Środowiska, 76, 1, pp. 15–18. (in Polish)
  • [34]. Thornton, S.F., Bright, M.I., Lerner, D.N. & Tellam, J.H. (2000). Attenuation of landfill leachate by UK Triassic sandstone aquifer materials. 2. Sorption and degradation of organic pollutants in laboratory columns, Journal of Contaminant Hydrology, 43, pp. 355–383.
  • [35]. Tonjes, D.J. (2013). Classification Methodology for Landfill Leachates, Journal of Environmental Engineering, 139, 8, pp. 1119–1122.
  • [36]. Wiszniowski, J., Robert, D., Surmacz-Górska, J., Miksch, K. & Weber, J.V. (2006). Landfill leachate treatment methods: A review, Environmental Chemistry Letters, 4, pp. 51–61.
  • [37]. Varank, G., Demir, A., Top, S., Sekman, E., Akkaya, E., Yetilmezsoy, K. & Bilgili, M.S. (2011). Migration behavior of landfill leachate contaminants through alternative composite lines, Science of the Total Environment, 409, pp. 3183–3196.
  • [38]. Zhan, T.L.T., Guan, C., Xie, H.J. & Chen, Y.M. (2014). Vertical migration of leachate pollutants in clayey soils beneath an uncontrolled an landfill at Huainan, China: A field and theoretical investigation, Science of the Total Environment, 470–471, pp. 290–298.
  • [39]. Zhang, H., Yang, B., Zhang, G. & Zhang, X. (2016). Sewage sludge as barrier material for heavy metals in waste landfill, Archives of Environmental Protection, 42, 2, pp. 52–58.
  • [40]. Zhu, N., Ku, T.T., Li, G. & Sang, N. (2013). Evaluating biotoxicity variations of landfill leachate as penetrating through the soil column, Waste Management, 33, pp. 1750–1757.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7b59fb2-ddb8-4ad0-a8a6-e60841a09a32
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.