PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

TIG and laser beam welded joints – simplified numerical analyses

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Regardless of the welding method, a new joint and the surrounding area are inevitably subjected to thermo-physical perturbation. The paper presents analyses of many different issues involved in welding and potential solutions including adoption of simplifying assumptions, application of numerical algorithms and development of reliable representative models. The Finite Element Method is used to determine residual stress distribution, using results from thermo-physical tests and widely known mechanical properties of metals subjected to welding processes. Experimental and numerical methods for determining residual stress are compared for welds generated using both TIG (Tungsten Inert Gas, Gas Tungsten Arc Welding) and a laser beam. This data reveals that it is necessary to precisely define location of the analyzed welded fragment to correctly determine thermal boundary conditions.
Rocznik
Strony
645--656
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Military University of Technology, Institute of Optoelectronics, Warsaw, Poland
  • Military University of Technology, Faculty of Mechanical Engineering, Warsaw, Poland
  • Military University of Technology, Faculty of Mechanical Engineering, Warsaw, Poland
Bibliografia
  • 1. Benasciutti D., Lanzutti A., Rupil G., Haeberle E., 2014, Microstructural and mechanical characterisation of laser-welded lap joints with linear and circular beads in thin low carbon steel sheets, Materials and Design, 62, 205-216
  • 2. Blacha Ł., Karolczuk A., 2016, Validation of the weakest link approach and the proposed Weibull based probability distribution of failure for fatigue design of steel welded joints, Engineering Failure Analysis, 67, 1, 46-62
  • 3. Bogdanowicz Z., Nasiłowska B., Jóźwiak P., Zasada D., 2015, Structure and mechanical properties of 1.4539 austenitic steel joints made by TIG and laser-beam welding, Solid State Phenomena, 224, 99-104
  • 4. Dong D., Liu Y., Yang Y., Li J., Ma M., Jiang T., 2014, Microstructure and dynamic tensile behavior of DP600 dual phase steel joint by laser welding, Materials Science and Engineering, 594, 17-25
  • 5. Dyląg Z., Jakubowicz A., Orłoś Z., 2007, Strength of Materials (in Polish), vol I, WNT Warszawa
  • 6. Jiao X., Yang Y., Zhou C., 2014, Seam tracking technology for hyperbaric underwater welding, Chinese Journal of Mechanical Engineering, 22, 2, 265-269
  • 7. Kluger K., Łagoda T., 2016, Fatigue life estimation for selected materials in multiaxial stress states with mean stress, Journal of Theoretical and Applied Mechanics, 54, 2, 385-396
  • 8. Lee C.-H., Chang K.-H., 2014, Comparative study on girth weld-induced residual stress between austenitic and duplex stainless steel pipe welds, Applied Thermal Engineering, 63, 140-150
  • 9. Ma J., Kong F., Liu W., Carlson B., Kovacevic R., 2014, Study on the strength and failure modes of laser welded galvanized DP980 steel lap joints, Journal of Materials Processing Technology, 214, 8, 1696-1709
  • 10. Marc R ○ 2011, Volume A: Theory and User Information, Copyright 2011 MSC. Software Corporation
  • 11. Murakawa H., 2013, Residual stress and distortion in laser welding, Handbook of Laser Welding Technologies, 374-398
  • 12. Nasiłowska B., 2016, Fatigue life and fractures in 1.4539 austenitic steel welded joints prepared using TIG and laser beam welding methods, PhD Thesis, Military University of Technology, Warsaw, 43-47
  • 13. Ogle M.H., Maddox S.J., 1998, Joints in aluminium, Seventh International Conference Joints in Aluminium – INALCO’98, Cambridge, UK
  • 14. Piekarska W., 2007, Numerical Analysis of Thermomechanical Phenomena in the Laser Beam Welding – the Tempaerature Field, Phase Transformations and Stresses (in Polish), Czestochowa University of Technology, Częstochowa
  • 15. Piekarska W., Kubiak M., 2011, Three-dimensional model for numerical analysis of thermal phenomena in laser – arc hybrid welding process, International Journal of Heat and Mass Transfer, 54, 23-24, 4966-4974
  • 16. Piekarska W, Kubiak M., 2013, Modeling of thermal phenomena in single laser beam and laser – arc hybrid welding processes using projection method, Applied Mathematical Modelling, 37, 415, 2051-2062
  • 17. PN-EN 10088 – 1:2014 – 12 – Stainless steels, Part 1: List of stainless steels
  • 18. Ranatowski E., 2009, Calculational Mechanics of Welding – Physical Fundamentals of the Process (in Polish), University Publications, University of Technology and Life Sciences in Bydgoszcz
  • 19. Susmel L., Tovo R., 2008, Molified W¨ohler curie method and Eurocode 3: accuracy in predicting the multixial fatigue strength of welded joint, [In:] Lifetime Estimation of Welded Joints, T. Łagoda (Edit.), 203-207
  • 20. Tan W., Shin Y.C., 2015, Multi-scale modeling of solidification and microstructure development in laser keyhole welding process for austenitic stainless steel, Computational Materials Science, 98, 15, 446-458
  • 21. Voss O., 2011, Untersuchung relevanter Einflussgro¨ssen auf die numerische Schweisssimulation, TU Braunschweig, Shaker Verlag, Aachen, 36
  • 22. Zamiri Akhlaghi F., 2009, Fatigue Life Assessment of Welded Bridge Details Using Structural Hot Spot Stress Method. A Numerical and Experimental Case Study, Master Thesis, Chalmers University of Technology, Göteborg, Sweden
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7b37245-7e78-4fc4-ac36-efd9eed7b947
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.