PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation of infeasible instruments in a sound synthesizer - implementation and control

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sound synthesis using mathematical modelling of musical instruments is a method particularly well suited for live performance using a physical controller. Depending on model complexity, it may be able to reproduce various subtle phenomena related to excitation and real time control of an instrument, providing an intuitive tool for a musician. A variant of physical modelling synthesis, referred to as the simulation of infeasible instruments, uses a model of an object that does not have a physical counterpart. Such model has some properties of a real object, which makes it still intuitive for a musician. However, other features, such as geometry, or material properties, are intentionally altered in such manner, that it could not function in reality. These infeasible features introduce new properties to the sound it produces. The study presents a few such models with a discussion regarding their implementation and control issues in a real-time sound synthesizer.
Rocznik
Strony
art. no. 2022206
Opis fizyczny
Bibliogr. 19 poz., il. kolor., 1 fot., 1 rys.
Twórcy
autor
  • Department of Mechanics and Vibroacoustics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • 1. M. Pluta; Sound synthesis for music reproduction and performance; Wydawnictwa AGH: Krakow, Poland, 2019.
  • 2. S. Bilbao; Numerical Sound Synthesis: Finite Difference Schemes and Simulation in Musical Acoustics; John Wiley Sons: New York, USA, 2009.
  • 3. S. Bilbao, J. Perry, P. Graham, A. Gray, K. Kavoussanakis, G. Delap, T. Mudd, G. Sassoon, T. Wishart, S. Young; The NESS Project: Large Scale Physical Modeling Synthesis, Parallel Computing, and Musical Experimentation; Computer Music Journal 2020, 43(2-3), 31-47.
  • 4. J.O. Smith III; Music applications of digital waveguides; Technical report, Department of Music, Stanford University, 1987.
  • 5. J.O. Smith III; Physical Modeling Using Digital Waveguides; Computer Music Journal 1992, 16(4), 74-91.
  • 6. J.O. Smith III; Acoustic modeling using digital waveguides; In: Musical Signal Processing; C. Roads, S.T. Pope, G. De Poli, A. Piccialli, Eds.; Swets & Zeitlinger: Downington, USA, 1997, 221-264.
  • 7. J.M. Adrien, E. Ducasse; Dynamic Modeling of Vibrating Structures for Sound Synthesis, Modal Synthesis; In: Proceedings of the AES 7th International Conference: Audio in Digital Times, Toronto, Canada, May 14-17, 1989; Audio Engineering Society: New York, USA, 1990, 291-299.
  • 8. J.D. Morrison, J.-M. Adrien; MOSAIC: A Framework for Modal Synthesis; Computer Music Journal 1993, 17(1), 45-56.
  • 9. G. Eckel, F. Iovino, R. Causseé; Sound synthesis by physical modelling with Modalys; In: Proceedings of ISMA 1995, International Symposium on Musical Acoustics, Dourdan, France, July 2-6, 1995; 479-482.
  • 10. C. Bruyns; Modal Synthesis for Arbitrarily Shaped Objects; Computer Music Journal 2006, 30(3), 22-37.
  • 11. A. Gołaś, R. Filipek; Digital Synthesis of Sound Generated by Tibetan Bowls and Bells; Archives of Acoustics 2016, 41(1), 139-150.
  • 12. C. Cadoz, A. Luciani, J.L. Florens, C. Roads, F. Chadabe; Responsive Input Devices and Sound Synthesis by Simulation of Instrumental Mechanisms: The CORDIS System; Computer Music Journal 1983, 8(3), 60-73.
  • 13. C. Roads; The Computer Music Tutorial; The MIT Press: Massachusetts, USA, 1996.
  • 14. P. Djoharian; Shape and Material Design in Physical Modeling Sound Synthesis; In: Proceedings of the 2000 International Computer Music Conference (ICMC), Berlin, Germany, August 27 - September 1, 2000; Michigan Publishing: Ann Arbor, USA, 2000, 38-45.
  • 15. J. Leonard, C. Cadoz; Physical Modelling Concepts for a Collection of Multisensory Virtual Musical Instruments; In: Proceedings of the International Conference on New Interfaces for Musical Expression (NIME’15), Baton Rouge, USA, May 31 - June 3, 2015; Louisiana State University: Baton Rouge, USA, 2015, 150-155.
  • 16. R. Courant, K. Friedrichs, and H. Lewy; Über die partiellen Differenzengleichungen der mathematischen Physik; Mathematische Annalen 1928, 100, 32-74.
  • 17. P.M. Morse, K.U. Ingard; Theoretical Acoustics; Princeton University Press: Princeton, USA, 1987.
  • 18. A. Czerwiński, D. Grzybek, P. Krauze, J. Łuczko, K. Michalczyk, P. Orkisz, M. Pluta, L. Radziszewski, M. Saga, J. Snamina; Synteza dźwięku z wykorzystaniem procesora graficznego, sterowana przy użyciu protokołu MIDI; In: Wybrane zagadnienia układów redukcji drgań i hałasu; Katedra Automatyzacji Procesów AGH: Kraków, Poland, 2015, 40-52.
  • 19. A. Munshi, B. Gaster, T.G. Mattson, J. Fung, D. Ginsburg; OpenCL Programming Guide; Addison-Wesley Professional: Boston, USA, 2011.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7b12f54-f8f3-4bc9-8518-b3e756c31ed4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.