PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Revolutionizing Dye Sensitized Solar Cells – Impact of Silicon Dioxide Purity Derived from Coal Fly Ash for Enhanced Photoelectric Performance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dye-sensitized solar cells (DSSCs) provide a promising alternative to traditional solar technologies, as they offer a unique mix of cost-effectiveness, adaptability, and the possibility of achieving high efficiency. This study aims to investigate the effect of SiO2 purity obtained from coal fly ash on the photoelectric performance of DSSCs. The study focuses on varying the purity of extracted SiO2 from coal fly ash as a counter-electrode material and examining its impact on the efficiency of DSSCs. The efficiency of DSSCs was assessed by evaluating the performance of several various SiO2 purity materials for counter-electrode materials. The performance testing of DSSCs revealed that the counter electrode material, consisting of artificial SiO2 with a purity of 99.9%, achieved the highest efficiency of 0.0113%. Subsequently, DSSCs were fabricated using counter-electrode materials derived from coal fly ash with a purity of 52.91%. These DSSCs demonstrated an efficiency of 0.0076%. DSSCs utilizing SiO2 with a purity of 91.20% exhibited an efficiency of 0.0062%. Dye-sensitized solar cells utilizing a counter electrode material composed of SiO2 with a purity level of 72.54% demonstrated an efficiency of 0.0061%. The results showed that the level of SiO2 purity obtained from coal fly ash has a substantial impact on the photoelectric performance of DSSCs, since higher purity of SiO2 is associated with improved efficiency.
Słowa kluczowe
Rocznik
Strony
210--220
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Applied Master Program of Renewable Energy Engineering, Politeknik Negeri Sriwijaya, Jl. Srijaya Negara Bukit Besar, Palembang, 30139, Indonesia
autor
  • Renewable Energy Engineering Department, Politeknik Negeri Sriwijaya, Jl. Srijaya Negara Bukit Besar, Palembang, 30139, Indonesia
autor
  • Renewable Energy Engineering Department, Politeknik Negeri Sriwijaya, Jl. Srijaya Negara Bukit Besar, Palembang, 30139, Indonesia
Bibliografia
  • 1. Adam, D.H. 2015. Analysis of total anthocyanin from red spinach leaves (Alternanthera amoena Voss.) Based on the Effect of Acid Type Addition. Edu Science, 2(2), 9–12 (In Indonesia). https://doi.org/10.36987/jes.v2i2.1006
  • 2. Akrofi M.M. 2021. An Analysis OF energy Diversification and Transition Trends in Africa. International Journal of Energy and Water Resources, 5(1), 1–12. https://doi.org/10.1007/s42108-020-00101-5
  • 3. Andarini N., Haryati T., Yulianti R. 2018. Purification of silicon (Si) obtained from the reduction of silica from coal fly ash. Berkala Sainstek, VI(1), 49-54 (in Indonesia). https://doi.org/10.19184/bst.v6i1.7933
  • 4. Bagaskara A., Makahekum S.A., Ramadhani D., Swadana W.A. 2024. Policy assessment: renewable energy development in indonesia’s power sector. Institute for Essential Services Reform, 1-18.
  • 5. Bhatt A., Priyadarshini S., Mohanakrishnan A.A., Abri A., Sattler M., Techapaphawit S. 2019. Physical, chemical, and geothecnical properties of coal fly ash: A global review. Case Studies in Construction Materials, 11, e00263, 1–11. https://doi.org/10.1016/j.cscm.2019.e00263
  • 6. Caroles, J.D.S. 2019. Extraction of silica from coal fly ash waste. Fullerene Journal of Chemistry, 4(1), 5–7 (in Indonesia). https://doi.org/10.37033/fjc.v4i1.43
  • 7. Choi G.H., Park J., Bae S., Park J.T. 2022. Quasi-solid-state SiO2 electrolyte prepared from raw fly ash for enhanced solar energy conversion. Materials, 15, 3576. https://doi.org/10.3390/ma15103576
  • 8. Ding, S., Yang C., Jie Y., Li H., Yuan X., Li M. 2023. An overview of the preparation and application of counter electrodes for DSSCs. RSC Advances, 13, 12309–12319. https://doi.org/10.1039/d3ra00926b
  • 9. Jiang Q., Huang J., Ma B., Yang Z., Zhang T., Wang X. 2020. Recyclable, hierarchical hollow photocatalyst TiO 2 @SiO 2 composite microsphere realized by raspberry-like SiO 2 . Colloid and Surfaces A, 602, 125112, 1–10. https://doi.org/10.1016/j.colsurfa.2020.125112
  • 10. Kabir. F., Bhuiyan M.M.H., Manir M.S., Rahaman M.S., Khan M.A., Ikegami T. 2019. Development of Dye-Sensitized Solar Cell Based on Combination of Natural Dyes Extracted from Malabar Spinach and Red Spinach. Results in Physics, 14, 102474, 1–7. https://doi.org/10.1016/j.rinp.2019.102474
  • 11. Kant N., and Singh P. 2022. Review of next generation photovoltaic solar cell technology and comparative materialistic development. Materials Today: Proceeding, 56(6), 3460–3470. https://doi.org/10.1016/j.matpr.2021.11.116
  • 12. Khan M., Iqbal M.A., Malik M., Hashmi S.U.M., Bakhsh S., Sohail M., Qamar M.T., AL-Bahrani M., Capangpangan R.Y., Alguno A.C., Choi J.R. 2023. Improving the efficiency of dye-sensitized solar cells based on rare-earth metal modified bismuth ferrites. Scientific Reports, 13, 3123, 1-14. https://doi.org/10.1038/s41598-023-30000-8
  • 13. Kumar R., Sahajwalla V., Bhargava P. 2019. Fabrication of a counter electrode for dye-sensitized solar cells (DSSCs) using a carbon material produced with the organic Ligand 2-Methyl-8-Hydroxylquinolinol (Mq). Nanoscale Advances, 1, 3192–3199. https://doi.org/10.1039/c9na00206e
  • 14. Laksana E.P., Prabowo Y., Sujono, Sirait R., Fath N., Priyadi A., Lystianingrum V., Purnomo M.H. 2021. Potential usage of solar energy as a renewable energy source in Petukangan Utara, South Jakarta. Jurnal Rekayasa Elektrika, 17(4), 212–216. https://doi.org/10.17529/jre.v17i4.22538
  • 15. Minh V.T.N., Pham V.H., Tung V.H., Tung C.T., Phuong N.T.H. 2023. Firinf-associated recycling of coal-fired power plant fly ash. Journal of Analytical Methods in Chemistry, 2023, 8597376, 1–13. https://doi.org/10.1155/2023/8597376
  • 16. Ministry of Energy and Mineral Resource Republic of Indonesia. 2023. Handbook of Energy and Economic Statistics of Indonesia, Jakarta.
  • 17. Mithari, P.A., Mendhe A.C., Patrikar S.R., Lokhande C.D., Sankapal B.R. 2023. Bi 2S 3 nanoparticles anchored MWCNTs towards core-shell architecture: Counter electrode for dye-sensitized solar cell. Applied Surface Science Advances, 18, 100485, 1–12. https://doi.org/10.1016/j.apsadv.2023.100485
  • 18. Mohamadpour F., and Amani A.M. 2024. Photocatalytic systems: Reactions, mechanism, and applications. RSC Advances, 14, 20609–20645. https://doi.org/10.1039/d4ra03259d
  • 19. Musiana R., Hasan A., Kusumanto RD. 2020. Titanium oxide soaking time effects on DSSC powers and efficiency. Atlantis Highlights in Engineering, 7, 29–34. https://doi.org/10.2991/ahe.k.210205.006
  • 20. Nadhirah Y., Kusumanto R.D., Hasan A. 2020. Increasing efficiency of dye-sensitized solar cell (DSSC) originating from yellow sweet potato extract as dye sensitizer: Effect of acetic acid, polyethylene glycol, and polyvinyl alcohol as TiO 2 Binders. Journal of Scientific and Applied Chemistry, 23(11), 403-408. https://doi.org/10.14710.jksa.23.11.403-408
  • 21. Pambudi N.A., Firdaus R.A., Rizkiana R., Ulfa D.K., Salsabila M.S., Suharno, Sukatiman. 2023. Renewable energy in Indonesia: Current status, potential, and future development. Sustainability, 15, 2342. https://doi.org/10.3390/su15032342
  • 22. Pastuszak J., and Wegierek P. 2022. Photovoltaic cell generations and current research directions for their development. Materials, 15, 5542, 1–30. https://doi.org/10.3390/ma15165542
  • 23. Prabavathy N., Shalini S., Balasundaraprabhu R., Velauthapillai D., Prasanna S., Walke P., Muthukumarasamy N. 2017. Effect of solvents in the extraction and stability of anthocyanin from the petals of Caesaloinia Pulcherrima for natural dye sensitized solar cell applications. J Mater Sci: Mater Electron, 1–11. https://doi.org/10.1007/s10854-017-6743-7
  • 24. Pramananda V., Fityay T.A.H., Misran E. 2021. Anthocyanin as natural dye in DSSC fabrication: A review. IOP Conf. Series: Materials Science and Engineering, 1122, 012104, 1–7. https://doi.org/10.1088/1757-899X/1122/1/012104
  • 25. Rehman F., Syed I.H., Khanam S., Ijaz S., Mehmood H., Zubair M., Massoud Y., Mehmood M.Q. 2023. Fourth-Generation Solar Cells: A Review. Energy Advances, 2, 1239–1262. https://doi.org/10.1039/d3ya00179b
  • 26. Ronaldo, Rusdianasari, Hasan A. 2024. Combine improvement for dye-sensitized solar cells: Characterization of metal oxide-doped TiO 2 nanoparticles integrated with Clitoria Ternatea extract. International Journal of Research in Vocational Studies, 4(2).
  • 27. Shah N., Shah A.A., Leung P.K., Khan S., Sun K., Zhu X., Liao Q. 2023. A review of third generation solar cells. Processes, 11, 1852, 1–58. https://doi.org/10.3390.pr11061852
  • 28. Sharma K., Sharma V., Sharma S.S. 2018. Dye-sensitized solar cells: Fundamentals and current status. Nanoscale Research Letter, 13(381), 1–46. https://doi.org/10.1186/s11671-018-2760-6
  • 29. Showman MS., Omara R.Y., El-Ashtoukhy E-S.Z., Farag H.A., El-Latif M.M.A. 2024. Formulation of silver phosphate/graphene/silica nanocomposite for enhancing the photocatalytic degradation of trypan blue dye in aqueous solution. Scientific Reports, 14, 15885, 1–14. https://doi-org/10.1038/ s41598-024-66054-5
  • 30. Singh B.W., Goyal A.K., Kumar P. 2021. Solar PV cell materials and technologies: Analyzing the recent developments. Materials Today: Proceeding, 43, 2843–2849. https://doi.org/10.1016/j.matpr.2021.01.003
  • 31. Soonmin H., Hardani, Nandi P., Mwankemwa B.S., Malevu T.D., Malik M.I. 2023. Overview on Different Types of Solar Cells: An Update. Applied Sciences, 13, 2051, 1–37. https://doi.org/10.3390/app13042051
  • 32. Trihutomo, P., Soeparman S., Widhiyanuriyawan D., Yuliati L. 2019. Performance improvement of dye-sensitized solar cell (DSSC) based natural dyes by clathrin protein. International Journal of Photoenergy, 4384728, 1–9. https://doi.org/10.1155/2019/4384728
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7ad2faf-79c6-4498-9ebc-29c3a534e4e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.