PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization of piezoelectric bimorph actuator 3d-deformations caused by electric change by means of multiscale curvature analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this work is to demonstrate the use of multiscale curvature tensor analysis to characterize deformations of piezoelectric bimorph actuator and to study the relation between loaded electric charge and the resulting deformed surface curvature. In particular, the strength of the correlations between surface shape characterized by curvature parameters (i.e., principal, Gaussian or mean curvature) and charge density is sought. The impact that the scale of the analysis of the curvature can have on the values of the curvature parameters for the deformed surfaces and the correlation with discharge energy is also studied. In this study the deformations of piezoelectric bimorph actuators are studied. In order to achieve quasi-static measurements, a dedicated charge amplifier was built to supply charge to the actuator. The deformations were then measured by Polytec® 3D laser scanning vibrometer PSV-400 by integration of captured motion. The obtained data was used to calculate curvature tensor field at multiple scales by applying the normal-based method. Principal, mean and Gaussian curvature was calculated at multiple scales and were correlated with applied charge. The obtained results contribute to better understanding of piezoelectric behavior under electric field.
Rocznik
Strony
art. no. 2020203
Opis fizyczny
Bibliogr. 22 poz., il. kolor., fot., 1 rys., wykr.
Twórcy
  • Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznań
autor
  • Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznań
Bibliografia
  • 1. R. Cade, Charge density, vertices and high curvature in two-dimensional electrostatics, Journal of Electrostatics, 17(2), (1985) 125 - 136.
  • 2. A. R. Hadjesfandiari, Size-dependent thermoelasticity, Latin American Journal of Solids and Structures, 11(9) (2016) 1679 - 1708.
  • 3. H. Tamagawa, F. Nogata, M. Sasaki, Charge quantity as a sole factor quantitatively governing curvature of Selemion, Sensors and Actuators B, 124 (2007) 6 - 11.
  • 4. V. Kumaran, Instabilities due to Charge-Density-Curvature Coupling in Charged Membranes, Physical Review Letters, 85(23) (2000) 4996 - 4999.
  • 5. M. Winterhalter, W. Helfrich, Effect of surface charge on the curvature elasticity of membranes, Journal of Physical Chemistry, 92 (1988) 6865 - 6867.
  • 6. V. Vitelli, A. M. Turner, Anomalous Coupling Between Topological Defects and Curvature, Physical Review Letters, 93 (21) (2004) 215301-1-4.
  • 7. J. M. Hyde, L. Cadet, J. Montgomery, C. A. Brown, Multi-scale areal topographic analysis of surfaces created by micro-EDM and functional correlations with discharge energy, Surf. Topogr.: Metrol. Prop. 2 (2014) 045001.
  • 8. C.A Brown, H. N. Hansen, X. J. Jiang, F. Blateyron, J. Berglund, N. Senin, T. Bartkowiak, B. Dixon, G. Le Goic, Y. Quinsat, W. J. Stemp, Multiscale analyses and characterizations of surface topographies, CIRP annals, 67(2) (2018) 839-862.
  • 9. T. Bartkowiak, J. Berglund, C. A. Brown, Establishing functional correlations between multiscale areal curvatures and coefficients of friction for machined surfaces, Surface Topography: Metrology and Properties, 6(3) (2018) 034002.
  • 10. T. Bartkowiak, C. A. Brown, A Characterization of Process-Surface Texture Interactions in Micro-Electrical Discharge Machining Using Multiscale Curvature Tensor Analysis, ASME. J. Manuf. Sci. Eng., 140(2) (2018) 021013.
  • 11. W. J. Stemp, B. E. Child, S. Vionnet, C.A Brown, Quantification and discrimination of lithic use-wear: surface profile measurements and length-scale fractal analysis, Archaeometry, 51 (2009) 366-382.
  • 12. F. Pedreschi, J.M. Aguilera, C.A.Brown, Characterization of food surfaces using scale-sensitive fractal analysis,. Journal of Food Process Engineering, 23 (2000) 127-143.
  • 13. R.S. Sayles, T.R. Thomas, The Spatial Representation of Surface Roughness by Means of the Structure Function: A Practical Alternative to Correlation, Wear, 42 (1977), 263-276.
  • 14. A.A.G. Bruzzone, J.S. Montanaro, A. Ferrando, P.M. Lonardo, Wavelet Analysis for Surface Characterisation: an Experimental Assessment, CIRP Annals—Manufacturing Technology, 53 (1) (2004), 479-482.
  • 15. ISO 25178-2. Geometrical product specifications (GPS)—Surface texture: Areal—Part, 2.
  • 16. J. Berglund, C. Agunwamba, B. Powers, C.A. Brown, B.-G. Rosén, On Discovering Relevant Scales in Surface Roughness Measurement—An Evaluation of a Band-Pass Method, Scanning, 32 (2010), 244-249.
  • 17. D. Gogolewski, Influence of the edge effect on the wavelet analysis process, Measurement, 152 (2020), 107314.
  • 18. B.B. Mandelbrot, The Fractal Geometry of Nature, W.H Freeman and Co., San Francisco, CA (1982).
  • 19. X. Zhang, Y. Xu, R.L. Jackson, An Analysis of Generated Fractal and Measured Rough Surfaces in Regards to Their Multiscale Structure and FD, Tribology International, 105 (2017), 94-101.
  • 20. A. Milecki, M. Pelic, Application of geometry based hysteresis modelling in compensation of hysteresis of piezo bender actuator, Mechanical Systems and Signal Processing, 78 (2016) 4 - 17.
  • 21. A. Pressley, Elementary Differential Geometry, Springer-Verlag London 2010.
  • 22. T. Bartkowiak, C. A. Brown, Multiscale 3D Curvature Analysis of Processed Surface Textures of Aluminum Alloy 6061 T6. Materials , 12(2) (2019) 257.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7ac8fc8-eb72-471b-89e4-6cc731dd0e20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.