Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, the Hamiltonian approach is extended for solving vibrations of nonlinear conservative oscillators with general initial conditions. Based on the assumption that the derivative of Hamiltonian is zero, the frequency as a function of the amplitude of vibration and initial velocity is determined. A method for error estimation is developed and the accuracy of the approximate solution is treated. The procedure is based on the ratio between the average residual function and the total energy of the system. Two computational algorithms are described for determining the frequency and the average relative error. The extended Hamiltonian approach presented in this paper is applied for two types of examples: Duffing equation and a pure nonlinear conservative oscillator.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
255--267
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- Escola de Engenharia de São Carlos, Universidade de São Paulo, São Paulo, Brazil
autor
- Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
Bibliografia
- 1. Akbarzade M., Kargar A., 2011a, Accurate analytical solutions to nonlinear oscillators by means of the Hamiltonian approach, Mathematical Methods in the Applied Sciences, 34, 17, 2089-2094
- 2. Akbarzade M., Kargar A., 2011b, Application of the Hamiltonian approach to nonlinear vibrating equations, Mathematical and Computer Modelling, 54, 910, 2504-2514
- 3. Akbarzade M., Khan Y., 2012, Dynamic model of large amplitude non-linear oscillations arising in the structural engineering: analytical solutions, Mathematical and Computer Modelling, 55, 34, 480-489
- 4. Askari H., Nia Z.S., Yildirim A., Kalami Yazdi M., 2013, Application of higher order Hamiltonian approach to nonlinear vibrating systems, Journal of Theoretical and Applied Mechanics, 51, 2, 287-296
- 5. Bayat M., Pakar I., Cveticanin L., 2014, Nonlinear free vibration of systems with inertia and static type cubic nonlinearities: an analytical approach, Mechanism and Machine Theory, 77, 50-58
- 6. Belendez A., Arribas E., Frances J., Pascual I., 2011, Notes on “Application of the Hamiltonian approach to nonlinear oscillators with rational and irrational elastic terms”, Mathematical and Computer Modelling, 54, 11-12, 3204-3209
- 7. Cveticanin L., 2013, Ninety year of Duffings equation, Theoretical and Applied Mechanics, 40, 1, 49-63
- 8. Cveticanin L., 2014, On the truly nonlinear oscillator with positive and negative damping, Applied Mathematics and Computation, 243, 433-445
- 9. Cveticanin L., Kalami-Yazdi M., Askari H., 2012, Analytical approximations to the solutions for a generalized oscillator with strong nonlinear terms, Journal of Engineering Mathematics, 77, 1, 211-223
- 10. Cveticanin L., Kalami-Yazdi M., Saadatnia Z., Askari H., 2010a, Application of Hamiltonian approach to the generalized nonlinear oscillator with fractional power, International Journal of Nonlinear Sciences and Numerical Simulation, 11, 12, 997-1002
- 11. Cveticanin L., Kovacic I., Rakaric Z., 2010b, Asymptotic methods for vibrations of the pure non-integer order oscillator, Computers and Mathematics with Applications, 60, 9, 2616-2628
- 12. Cveticanin L., Pogany T., 2012, Oscillator with a sum of noninteger-order nonlinearities, Journal of Applied Mathematics, 2012, 649050, 1-20
- 13. Duffing G., 1918, Erzwungene Schwingungen bei veranderlicher Eigenfrequenz und ihre technische Bedeutin, Druck und Verlag von Fridr, Vieweg & Sohn, Braunschweig, Germany
- 14. Durmaz S., Altay Demirbag S., Kaya M.O., 2010, High order Hamiltonian approach to nonlinear oscillators, International Journal of Nonlinear Sciences and Numerical Simulation, 11, 8, 565-570
- 15. Durmaz S., Altay Demirbag S., Kaya M.O., 2012, Hamiltonian approach to multiple coupled nonlinear oscillators, Acta Physica Polonica A, 121, 1, 47-49
- 16. He J.H., 2010, Hamiltonian approach to nonlinear oscillators, Physics Letters, Section A: General, Atomic and Solid State Physics, 374, 23, 2312-2314
- 17. He J.H., Zhong T., Tang L., 2010, Hamiltonian approach to Duffing-harmonic equation, International Journal of Nonlinear Sciences and Numerical Simulation, 11, 43-46
- 18. Heris¸anu N, Marinca V., 2010, Accurate analytical solutions to oscillators with discontinuities and fractional-power restoring force by means of the optimal homotopy asymptotic method, Computers and Mathematics with Applications, 60, 6, 1607-1615
- 19. Khan N.A., Jamil M., Ara A., 2011, Multiple-parameter Hamiltonian approach for higher accurate approximations of a nonlinear oscillator with discontinuity, International Journal of Differential Equations, 2011, 649748
- 20. Kovacic I., Brennam M.J., eds., 2011, The Duffing Equation: Nonlinear Oscillators and their Behaviour, John Wiley & Sons, United Kingdom
- 21. Kovacic I., Rakaric Z., Cveticanin L., 2010, A non-simultaneous variational approach for the oscillators with fractional-order power nonlinearities, Applied Mathematics and Computation, 217, 8, 3944-3954
- 22. Navarro H.A., Cveticanin L., 2016, Amplitude-frequency relationship obtained using Hamiltonian approach for oscillators with sum of non-integer order nonlinearities, Applied Mathematics and Computation, 291, 162-171
- 23. Sadeghzadeh S., Kabiri A., 2016, Application of higher order Hamiltonian approach to the nonlinear vibration of micro electro mechanical systems, Latin American Journal of Solids and Structures, 13, 3, 478-497
- 24. Xu L., He J.H., 2010, Determination of limit cycle by Hamiltonian approach for strongly nonlinear oscillators, International Journal of Nonlinear Sciences and Numerical Simulation, 11, 12, 1097-1101
- 25. Yildirim A., Askari H., Kalami Yazdi M., Khan Y., l2012, A relationship between three analytical approaches to nonlinear problems, Applied Mathematics Letters, 25, 11, 1729-1733
- 26. Yildirim A., Askari H., Saadatnia Z., Kalami Yazdi M., Khan Y., 2011a, Analysis of nonlinear oscillations of a punctual charge in the electric field of a charged ring via a Hamiltonian approach and the energy balance method, Computers and Mathematics with Applications, 62, 1, 486-490
- 27. Yildirim A., Saadatnia Z., Askari H., 2011, Application of the Hamiltonian approach to nonlinear oscillators with rational and irrational elastic terms, Mathematical and Computer Modelling, 54, 12, 697-703
- 28. Yildirim A., Saadatnia Z., Askari H., Khan Y., Kalami Yazdi M., 2011, Higher order approximate periodic solutions for nonlinear oscillators with the Hamiltonian approach, Applied Mathematics Letters, 24, 12, 2042-2051
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7a38705-1de8-4f2f-9559-f09ccaf620ae