PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stress evolution of rock breakages by a disc cutter assisted by pre-cuts

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To study the rock breakage mechanism by constant cross-section cutters assisted by pre-cuts, the present study first performed small-scaled linear cutting tests on sandstone specimens containing pre-cuts. The laboratory tests indicate that the sufficiently large penetration, causing successful internal and surface crack incisions, is essential for large chip formation. In addition, the small pre-cut depth may fail to form large chips. The numerical results agree well with laboratory tests in fracture patterns. More importantly, the numerical analysis indicates that the increases in rolling force frequently result in stress concentrations. When the stresses concentrate to critical values, fracture propagation occurs. The fracture propagation causes stress dissipation and the decrease in rolling force. Thus, the relation between cutting load fluctuations and crack propagation is revealed. Moreover, the influence of penetration on crack propagation is analyzed. By analyzing the stress fields at typical peak points of the rolling force, the crack propagation direction is predicted, and the influence of pre-cut depth on fracture propagation is studied.
Rocznik
Strony
art. no. e115, 2023
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Building Engineering, Hunan Institute of Engineering, 88th Fuxing Road, Xiangtan, China
autor
  • Department of Building Engineering, Hunan Institute of Engineering, 88th Fuxing Road, Xiangtan, China
autor
  • School of Resources and Safety, Central South University, Changsha, China
autor
  • Department of Building Engineering, Hunan Institute of Engineering, 88th Fuxing Road, Xiangtan, China
Bibliografia
  • 1. Zhang XH, Hua DB, Li JM, Pan JJ, Xia YM, Tian YC. Investigation of rock breaking mechanism with TBM hob under traditional and free-face condition. Eng Fract Mech. 2021;242: 107432.
  • 2. Zhang ZH. Study on the abrasion of disc cutters on full face rock tunnel boring machine. Mod Tunnelling Technol. 2007;44(6):32-6 (In Chinese).
  • 3. Yang HQ, Wang H, Zhou XP. Analysis on the rock-cutter interaction mechanism during the TBM tunneling process. Rock Mech Rock Eng. 2016;49(33):1073-90.
  • 4. Cardu M, Iabichino G, Oreste P, Rispoli A. Experimental and analytical studies of the parameters influencing the action of TBM disc tools in tunnelling. Acta Geotech. 2017;12(2):293-304.
  • 5. Labra C, Rojek J, Onate E. Discrete/finite element modelling of rock cutting with a TBM disc cutter. Rock Mech Rock Eng. 2017;50(3):621-38.
  • 6. Entacher M, Schuller E, Galler R. Rock failure and crack propagation beneath disc cutters. Rock Mech Rock Eng. 2015;48(4):1559-72.
  • 7. Entacher M, Lorenz S, Galler R. Tunnel boring machine performance prediction with scaled rock cutting tests. Int J Rock Mech Min Sci. 2014;70:450-9.
  • 8. Entacher M, Schuller E. Angular dependence of rock cutting forces due to foliation. Tunn Undergr Space Technol. 2018;71:215-22.
  • 9. Cho JW, Jeon S, Jeong HY, Chang SH. Evaluation of cutting efficiency during TBM disc cutter excavation within a Korean granitic rock using linear-cutting-machine testing and photogrammetric measurement. Tunn Undergr Space Technol. 2013;35:37-54.
  • 10. Geng Q, Wei ZY, Meng H. An experimental research on the rock cutting process of the gage cutters for rock tunnel boring machine (TBM). Tunn Undergr Space Technol. 2016;52:182-91.
  • 11. Zhao XB, Yao XH, Gong QM, Ma HS, Li XZ. Comparison study on rock crack pattern under a single normal and inclined disc cutter by linear cutting experiments. Tunn Undergr Space Technol. 2015;50:479-89.
  • 12. Yang HQ, Liu JF, Liu BL. Investigation on the cracking character of jointed rock mass beneath TBM disc cutter. Rock Mech Rock Eng. 2018;51(4):1263-77.
  • 13. Yin LJ, Miao CT, He GW, Dai FC, Gong QM. Study on the influence of joint spacing on rock fragmentation under TBM cutter by linear cutting test. Tunn Undergr Space Technol. 2016;57:137-44.
  • 14. Ma HS, Gong QM, Wang J, Zhao XB, Yin LJ, Miao CT, He GW. Linear cutting tests on effect of confining stress on rock fragmentation by TBM cutter. Chinese J Rock Mech Eng. 2016;35(2):346-55 (In Chinese).
  • 15. Zheng YL, He L. TBM tunneling in extremely hard and abrasive rocks: problems, solutions and assisting methods. J Cent South Univ. 2021;28(2):454-80.
  • 16. Dehkhoda S, Fairhusrst C. Rapid excavation and tunneling techniques. Hydraulic Fract J. 2017;4:101-8.
  • 17. Ren FS, Fang TC, Cheng XZ, Cheng JX. Failure volume under particle water-jet impact in deep well drilling engineering: mathematical modeling and verification analysis. Alex Eng J. 2021;60(1):1839-49.
  • 18. He LP, Liu YB, Shen K, Yang XL, Ba QB, Xiong W. Numerical research on the dynamic rock-breaking process of impact drilling with multi-nozzle water jets. J Pet Sci Eng. 2021;207: 109145.
  • 19. Chen JL, Yang SQ, Han WF, Zhang ZR, Jiang ZH, Lu FJ. Experimental and numerical study on the indentation behavior of TBM disc cutter on hard-rock precutting kerfs by high-pressure abrasive water jet. Arch Civ Mech Eng. 2022;22(1):37.
  • 20. Liu SY, Zhou FY, Li HS, Chen YQ, Wang FC, Guo CW. Experimental investigation of hard rock breaking using a conical pick assisted by abrasive water jet. Rock Mech Rock Eng. 2020;53(9):4221-30.
  • 21. Cheng JL, Wang YX, Wang LG, Li YH, Hu B, Jiang ZH. Penetration behaviour of TBM disc cutter assisted by vertical precutting free surfaces at various depths and confining pressures. Arch Civ Mech Eng. 2021;21(1):22.
  • 22. Cheng JL, Jiang ZH, Han WF, Li ML, Wang YX. Breakage mechanism of hard-rock penetration by TBM disc cutter after high pressure water jet precutting. Eng Fract Mech. 2020;240: 107320.
  • 23. Xia YM, Guo B, Cong GQ, Zhang XH, Zeng GY. Numerical simulation of rock fragmentation induced by a single TBM disc cutter close to a side free surface. Int J Rock Mech Min Sci. 2017;91:40-8.
  • 24. Geng Q, Wei ZY, Meng H, Macias FJ, Bruland A. Free-face-assisted rock breaking method based on the multi-stage tunnel boring machine (TBM) cutterhead. Rock Mech Rock Eng. 2016;49(11):4459-72.
  • 25. Lu YY, Tang JR, Ge ZL, Xia BW, Liu Y. Hard rock drilling technique with abrasive water jet assistance. Int J Rock Mech Min Sci. 2013;60:47-56.
  • 26. Ramezanzadeh A, Hood M. A state-of-the-art review of mechanical rock excavation technologies. J Min Environ. 2010;1:29-39.
  • 27. Zhang XH, Xia YM, Tan Q, Wu D. Comparison study on the rock cutting characteristics of disc cutter under free-face-assisted and conventional cutting methods. KSCE J Civ Eng. 2018;22(10):4155-62.
  • 28. Zhang XH, Xia YM, Zeng GY, Tan Q, Guo B. Numerical and experimental investigation of rock breaking method under free surface by TBM disc cutter. J Cent South Univ. 2018;25(9):2107-18.
  • 29. Xu FT, Lu JJ, Zhou H, Xiao JC, Zhang CQ, Qiu HQ. Research on combined rock-breaking mode of pre-cutting groove and TBM mechanical cutter. Rock Soil Mech. 2021;42(5):1363-72 (In Chinese).
  • 30. Liu J, Jiang GY, Huang ZH, Liu TY. An experimental and numerical study of sandstone fractures caused by modified and CCS cutters. Eng Fract Mech. 2022;271: 108627.
  • 31. Cao RH, Cao P, Fan X, Xiong X, Lin H. An experimental and numerical study on mechanical behavior of ubiquitous-joint brittle rock-like specimens under uniaxial compression. Rock Mech Rock Eng. 2016;49(11):4319-38.
  • 32. Cao RH, Cao P, Lin H, Pu CZ, Ou K. Mechanical behavior of brittle rock-like specimens with pre-existing fissures under uniaxial loading: experimental studies and particle mechanics approach. Rock Mech Rock Eng. 2016;49(3):763-83.
  • 33. Choi SO, Lee SJ. Three-dimensional numerical analysis of the rock-cutting behavior of a disc cutter using particle flow code. KSCE J Civ Eng. 2015;19(4):1129-38.
  • 34. Gu LJ, Feng XT, Kong R, Yang CX. Effect of principal stress direction interchange on the failure characteristics of hard rock. Int J Rock Mech Min Sci. 2023;164: 105365.
  • 35. Eldahshan H, Munoz DP, Alves J, Perchat E, Bouchard PO. 3D crack initiation and propagation applied to metal forming processes. Int J Mater Form. 2022;15(5):60.
  • 36. Liu J, Wang J, Wan W. Numerical study of crack propagation in an indented rock specimen. Comput Geotech. 2018;96:1-11.
  • 37. Dai W, Xia YM, Xu HL, Yang M. Numerical simulation of freezing effect and tool change of shield machine with a frozen cutterhead. J Cent South Univ. 2020;27(4):1262-72.
  • 38. Lin LK, Mao QS, Xia YM, Zhu ZM, Yang D, Guo B, Lan H. Experimental study of specific matching characteristics of tunnel boring machine cutter ring properties and rock. Wear. 2017;378–379:1-10.
  • 39. Zhao KK, Jiang PF, Feng YJ. Investigation of the characteristics of hydraulic fracture initiation by using maximum tangential stress criterion. J Min Strata Control Eng. 2021;3(2):14-22 (In Chinese).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7a291e2-c932-417d-8136-bae84d7c3a89
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.