PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An overview of design, control, power management, system stability and reliability in electric ships

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With the fast development of power electronics techniques, electrification of shipboard power systems (SPS) is an unstoppable trend, and the concepts of electric ships (ESs) and all-electric ships (AESs) emerge. In order to meet the constantly increasing electricity demand in SPS, the medium voltage direct current (MVDC) SPS becomes a promising shipboard electrical network architecture. This paper aims to present a comprehensive review of the design, control, power management, system stability and reliability in ESs. The most recent technologies and academic achievements in these fields are discussed. In the near future, it is possible that the electric propulsion technology will be widely applied to various types of ships.
Wydawca
Rocznik
Strony
5--29
Opis fizyczny
Bibliogr. 86 poz., rys., tab.
Twórcy
autor
  • University of Liverpool, L69 3GJ Liverpool, United Kingdom
autor
  • University of Liverpool, L69 3GJ Liverpool, United Kingdom
autor
  • University of Liverpool, L69 3GJ Liverpool, United Kingdom
Bibliografia
  • [1] HANSEN J.F., WENDT F., History and state of the art in commercial electric ship propulsion, integrated power systems, and future trends, Proc. IEEE, 2015, 103(12), 2229-2242.
  • [2] DNANES A.K.A., Maritime electrical installations and diesel electric propulsion, ABB report/Lecture note NTNU, 2003.
  • [3] SKJONG E., VOLDEN R., RODSKAR E., MOLINAS M., JOHANSEN T.A., CUNNINGHAM J., Past, Present, and future challenges of the marine vessel’s electrical power system, IEEE Trans. Transport. Electr., 2016, 2(4), 522-537.
  • [4] SULLIGOI G., VICENZUTTI A., MENIS R., All-electric ship design. from electrical propulsion to integrated electrical and electronic power systems, IEEE Trans. Transport. Electr., 2016, 2(4), 507-521.
  • [5] VICENZUTTI A., BOSICH D., GIADROSSI G., SULLIGOI G., The role of voltage controls in modern allelectric ships. Toward the all electric ship, IEEE Electr. Mag., 2015, 3(2), 49-65.
  • [6] CHALFANT J., Early-stage design for electric ship, Proc. IEEE, 2015, 103(12), 2252-2266.
  • [7] KEANE R.G. Jr., Reducing total ownership cost. Designing inside-out of the hull, Naval Eng. J., 2012, 124(4), 67-80.
  • [8] THURKINS E.J. Jr., Development of an early stage ship design tool for rapid modeling in paramarine, Nav. E. thesis, Dept. Mech. Eng., Massachusetts Inst. Technology, Cambridge, MA, USA, 2012.
  • [9] JURKIEWICZ D.J., CHALFANT J., CHRYSSOSTOMIDIS C., Modular IPS machinery arrangement in early-stage naval ship design, Proc. 2013 IEEE Electric Ship Technology Symp. (ESTS), Arlington, VA, USA, 2013, 22-24.
  • [10] NESTORAS K., A tool to create hydrodynamically optimized hull-forms with geometrical constraints from internal arrangements, S.M. thesis, Dept. of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 2013.
  • [11] OERS B.V., STAPERSMA D., HOPMAN J.J., A 3D packing approach for the early stage configuration design of ships, V. Bertram (Ed.), Proc. Int. Conf. Computer Applications and Information Technology in the Maritime Industries (COMPIT), Gubbio, Italy, 2010, 367-381.
  • [12] DOERRY N.H., CLAYTON D.H., Shipboard electrical power quality of service, Proc. IEEE Electric Ship Technology Symp., Philadelphia, PA, USA, 2005, 274-279.
  • [13] GALE P.A., The ship design process, [in:] T. Lamb (Ed.), Ship design and construction, Vol. 1, Alexandria, VA, USA, Society of Naval Architects and Marine Engineers, 2003, Ch. 5.
  • [14] MISTREE F., SMITH W.F., BRAS B., ALLEN J.K., MUSTER D., Decision based design. A contemporary paradigm for ship design, Trans. Society of Naval Architects and Marine Engineers, 1990, 98, 565-597.
  • [15] CHALFANT J., FERRANTE M., CHRYSSOSTOMIDIS C., Design of a notional ship for use in the development of early-stage design tools, [in:] Proc. 2015 IEEE Electric Ship Technology Symposium (ESTS), Alexandria, VA, USA, June 22-24, 2015, 239-244.
  • [16] BROWN A., SALCEDO J., Multiple-objective optimization in naval ship design, Naval Eng. J., 2003, 115(4), 49-61.
  • [17] STEPANCHICK J., BROWN A., Revisiting DDGX/DDG-51 concept exploration, Naval Eng. J., 2007, 119(3), 67-88.
  • [18] ALI H., DOUGAL R., OUROUA A., HEBNER R., STEURER M., ANDRUS M., LANGSTON J., SCHODER K., HOVSAPIAN R., Cross-platform validation of notional baseline architecture models of naval electric ship power systems, Proc. IEEE Electric Ship Technology Symp., ESTS, Alexandria, VA, USA, 2011, 78-83.
  • [19] WANG Z., WANG X., CAO J., CHENG M., HU Y., Direct torque control of T-NPC inverters-fed double-stator-winding PMSM drives with SVM, IEEE Trans. Power Electron., 2018, 33(2), 1541-1553.
  • [20] WU P.-H., CHEN Y.-T., CHENG P.-T., The delta-connected cascaded H-bridge converter application in distributed energy resources and fault ride through capability analysis, IEEE Trans. Ind. Appl., 2017, 53(5), 4665-4672.
  • [21] JANKOVIC M., COSTABEBER A., WATSON A., CLARE J.C., Arm-balancing control and experimental validation of a grid-connected MMC with pulsed DC load, IEEE Trans. Ind. Electron., 2017, 64(12), 9180-9190.
  • [22] QUAN Z., LI Y., Harmonic analysis of interleaved voltage source converters and tri-carrier PWM strategies for three-level converters, 18th Workshop on Control and Modeling for Power Electronics (COMPEL), IEEE, Stanford, CA, USA, 2017, 1-7.
  • [23] LIU H., ZHANG D., WANG D., Design considerations for output capacitance under inductance mismatches in multiphase buck converters, IEEE Trans. Power Electron., 2017, 32(7), 5004-5015.
  • [24] ARIFF E.A.R.E., DORDEVIC O., JONES M., A space vector PWM technique for a three-level symmetrical six-phase drive, IEEE Trans. Ind. Electron., 2017, 64(11), 8396-8405.
  • [25] MA H., CHEN G., YI J.H., MENG Q.W., ZHANG L., Xu J.P., A single-stage PFM-APWM hybrid modulated soft-switched converter with low bus voltage for high-power LED lighting applications, IEEE Trans. Ind. Electron., 2017, 64(7), 5777-5788.
  • [26] ERICSEN T., HINGORANI N., KHERSONSKY Y., PEBB – power electronics building blocks. From concept to reality, Petroleum and Chemical Industry Conference, 2006, PCIC ’06, Proc. IEEE Industry Applications Society 53rd Annual, Philadelphia, PA, USA, 2006, 12-16.
  • [27] YU J., BURGOS R., MEHRABADI N.R., BOROYEVICH D., DC fault current control of modular multilevel converter with SiC-based power electronics building blocks, Electric Ship Technologies Symp., ESTS, IEEE, Arlington, VA, USA, 2017, 30-35.
  • [28] WANG F., ZHANG Z., ERICSEN T., RAJU R., BURGOS R., BOROYEVICH D., Advances in power conversion and drives for shipboard systems, Proc. IEEE, 2015, 103(12), 2285-2311.
  • [29] DEBNATH S., QIN J., BAHRANI B., SAEEDIFARD M., BARBOSA P., Operation, control, and applications of the modular multilevel converter. A review, IEEE Trans. Power Electron., 2015, 30(1), 37-53.
  • [30] PEREZ M.A., BERNET S., RODRIGUEZ J., KOURO S., LIZANA R., Circuit topologies, modeling, control schemes, and applications of modular multilevel converters, IEEE Trans. Power Electron., 2015, 30(1), 4-17.
  • [31] CUZNER R.M., SOMAN R., STEURER M.M., TOSHON T.A., FARUQUE M.O., Approach to scalable model development for navy shipboard compatible modular multilevel converters, IEEE J. Emerg. Sel. Topics Power Electron., 2017, 5(1), 28-39.
  • [32] MO R., LI H., Hybrid energy storage system with active filter function for shipboard MVDC system applications based on isolated modular multilevel DC/DC converter, IEEE J. Emerg. Sel. Topics Power Electron., 2017, 5(1), 79-87.
  • [33] CHEN Y., ZHAO S., LI Z., WEI X., KANG Y., Modeling and control of the isolated DC-DC modular multilevel converter for electric ship medium voltage direct current power system, IEEE J. Emerg. Sel. Topics Power Electron., 2017, 5(1), 124-139.
  • [34] CHEN Y., LI Z., ZHAO S., WEI X., KANG Y., Design and implementation of a modular multilevel converter with hierarchical redundancy ability for electric ship MVDC system, IEEE J. Emerg. Sel. Topics Power Electron., 2017, 5(1), 189-202.
  • [35] MILLAN J., GODIGNON P., PERPINA X., PEREZ-TOMAS A., REBOLLO J., A survey of wide bandgap power semiconductor devices, IEEE Trans. Power Electron., 2014, 29(5), 2155-2163.
  • [36] BIELA J., SCHWEIZER M., WAFFLER S., KOLAR J.W., SiC versus Si. Evaluation of potentials for performance improvement of inverter and DC-DC converter systems by SiC power semiconductors, IEEE Trans. Ind. Electron., 2011, 58(7), 2872-2882.
  • [37] MISHRA U.K., PARIKH P., WU Y.-F., AlGaN/GaN HEMTs – an overview of device operation and applications, Proc. IEEE, 2002, 90(6), 1022-1031.
  • [38] BAGINSKI T.A., THOMAS K.A., A robust one-shot switch for high power pulse applications, IEEE Trans. Power Electron., 2009, 24(1), 253-259.
  • [39] MITRA P., VENAYAGAMOORTHY G.K., An adaptive control strategy for DSTATCOM applications in an electric ship power system, IEEE Trans. Power Electron., 2010, 25(1), 95-104.
  • [40] KANELLOS F.D., ANVARI-MOGHADDAM A., GUERRERO J.M., A cost-effective and emission-aware power management system for ships with integrated full electric propulsion, Electric Power Syst. Res., 2017, 150, 63-75.
  • [41] SKJONG E., SUUL J.A., RYGG A., JOHANSEN T.A., MOLINAS M., System-wide harmonic mitigation in a diesel-electric ship by model predictive control, IEEE Trans. Ind. Electron., 2016, 63(7), 4008-4019.
  • [42] IM W.-S., WANG C., TAN L., LIU W., LIU L., Cooperative controls for pulsed power load accommodation in a shipboard power system, IEEE Trans. Power Syst., 2016, 31(6), 5181-5189.
  • [43] DONG D., PAN Y., LAI R., WU X., WEEBER K., Active fault-current foldback control in thyristor rectifier for DC shipboard electrical system, IEEE J. Emerg. Sel. Topics Power Electron., 5(1), 203-212, 2017.
  • [44] YAN C., VENAYAGAMOORTHY G.K., CORZINE K., Hardware implementation of an AIS-based optimal excitation controller for an electric ship, IEEE Trans. Ind. Appl., 2011, 47(2), 1060-1070.
  • [45] VALLE Y.D., VENAYAGAMOORTHY G.K., MOHAGHEGHI S., HERNANDEZ J.C., HARLEY R.G., Particle swarm optimization. Basic concepts, variants and applications in power systems, IEEE Trans. E, Comput., 2008, 12(2), 171-195.
  • [46] YAN C., VENAYAGAMOORTHY G.K., CORZINE K., AIS-based coordinated and adaptive control of generator excitation systems for an electric ship, IEEE Trans. Ind. Electron., 2012, 59(8), 3102-3112.
  • [47] ZHENG F., WANG Q., LEE T.H., HUANG X., Robust PI controller design for nonlinear systems via fuzzy modeling approach, IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, 2001, 31(6), 666-675.
  • [48] KARIMI A., FELIACHI A., PSO-tuned adaptive backstepping control of power systems, Proc. IEEE Power Systems Conf. Expo., 2006, 1315-1320.
  • [49] MOHAGHEGHI S., VALLE Y.D., VENAYAGAMOORTHY G.K., HARLEY R.G., A proportional-integrator type adaptive critic design-based neurocontroller for a static compensator in multimachine power systems, IEEE Trans. Ind. Electron., 54(1), 86-96, 2007.
  • [50] KANKANALA P., SRIVASTAVA S.C., SRIVASTAVA A.K., SCHULZ N.N., Optimal control of voltage and power in a multi-zonal MVDC shipboard power system, IEEE Trans. Power Syst., 2012, 27(2), 642-650.
  • [51] MASHAYEKH S., BUTLER-PURRY K.L., An integrated security-constrained model-based dynamic power management approach for isolated microgrids in all-electric ships, IEEE Trans. Power Syst., 2015, 30(6), 2934-2945.
  • [52] TASHAKORI ABKENAR A., NAZARI A., JAYASINGHE S.D.G., KAPOOR A., NEGNEVITSKY M., Fuel cel power management using genetic expression programming in all-electric ships, IEEE Trans. En. Conv., 2017, 32(2), 779-787.
  • [53] SHARIATZADEH F., KUMAR N., SRIVASTAVA A.K., Optimal control algorithms for reconfiguration of shipboard microgrid distribution system using intelligent techniques, IEEE Trans. Ind. Appl., 2017, 53(1), 474-482.
  • [54] JIN Z., SULLIGOI G., CUZNER R., MENG L., VASQUEZ J.C., GUERRERO J.M., Next-generation shipboard DC power system. Introduction smart grid and DC microgrid technologies into maritime electrical networks, IEEE Electr. Mag., 2016, 4(2), 45-57.
  • [55] RUDRARAJU S.R., SRIVASTAVA A.K., SRIVASTAVA S.C., SCHULZ N.N., Small signal stability analysis of a shipboard MVDC power system, Proc. IEEE Electric Ship Technology Symp., 2009, 135-141.
  • [56] LIU X., LI H., WANG Z., A start-up scheme for a three-stage solid-state transformer with minimized transformer current response, IEEE Trans. Power Electron., 2012, 27(12), 4832-4836.
  • [57] XU S., HUANG A.Q., BURGOS R., Review of solid-state transformer technologies and their application in power distribution systems, IEEE J. Emerg. Sel. Topics Power Electron., 2013, 1(3), 186-198.
  • [58] KHAN M.M.S., FARUQUE M.O., Energy storage management for MVDC power system of all electric ship under different load conditions, Electric Ship Technologies Symposium (ESTS), 2017 IEEE, Arlington, VA, USA, 2017, 192-199.
  • [59] PETERSEN L.J., HOFFMAN D.J., BORRACCINI J.P., SWINDLER S.B., Next generation power and energy. Maybe not so next generation, J. Naval Eng., 2010, 122(4), 59-74.
  • [60] DOERRY N., AMY J., MVDC shipboard power system considerations for electromagnetic railguns, Proc. 6th DoD Electromagnetic Railgun Workship, Laurel, MD, USA, 2015, 15-16.
  • [61] MCCOY T.J., Integrated power systems. An outline of requirements and functionalities for ships, Proc. IEEE, 2015, 103(12), 2276-2284.
  • [62] SULLIGOI G., TESSAROLO A., BENUCCI V., MILLERANI-TRAPANI A., BARET M., LUISE F., Shipboard power generation. Design and development of a medium-voltage DC generation system, IEEE Ind. Appl. Magazine, 2013, 19(4), 47-55.
  • [63] KANELLOS F.D., PROUSALIDIS J., TSEKOURAS G.J., Onboard DC grid employing smart grid technology. Challenges, state of the art and future prospects, IET Electr. Syst. Transport., 2015, 5(1), 1-11.
  • [64] IEEE recommended practice for 1 to 35 kV medium voltage DC power systems on ships, IEEE Standards Association, 2010, https://standards.ieee.org/findstds/standard/1709-2010.html
  • [65] FARASAT M., ARABALI A., TRZYNADLOWSKI A.M., Flexible-voltage DC-bus operation for reduction of switching losses in all-electric ship power systems, IEEE Trans. Power Electron., 2014, 29(11), 6151-6161.
  • [66] SU C.-L., LIN K.-L., CHEN C.-J., Power flow and generator-converter schemes studies in ship MVDC distribution systems, IEEE Trans. Ind. Appl., 2016, 52(1), 50-59.
  • [67] SEENUMANI G., SUN J., PENG H., Real-time power management of integrated power systems in all electric ships leveraging multi time scale property, IEEE Trans. Control Syst. Technology, 2011, 232-240.
  • [68] SEENUMANI G., SUN J., PENG H., A numerically efficient iterative procedure for hybrid power system optimization using sensitivity functions, Proc. American Control Conf., 2007, 4738-4743.
  • [69] FENG X., BUTLER-PURRY K.L., ZOURNTOS T., Multi-agent system-based real-time load management for allelectric ship power systems in DC zone level, IEEE Trans. Power Syst., 2012, 27(4), 1719-1728.
  • [70] FENG X., BUTLER-PURRY K.L., ZOURNTOS T., A Multi-agent system framework for real-time electric load management in MVAC all-electric ship power systems, IEEE Trans. Power Syst., 2015, 30(3), 1327-1336.
  • [71] KANELLOS F.D., Optimal power management with GHG emissions limitation in all-electric ship power systems comprising energy storage systems, IEEE Trans. Power Syst., 2014, 29(1), 330-339.
  • [72] KANELLOS F.D., TSEKOURAS G.J., HATZIARGYRIOU N.D., Optimal demand-side management and power generation scheduling in an all-electric ship, IEEE Trans. Sust. En., 2014, 5(4), 1166-1175.
  • [73] JOHANSEN T.A., BO T.I., MATHIESEN E., VEKSLER A., SORENSEN A.J., Dynamic positioning system as dynamic energy storage on diesel-electric ships, IEEE Trans. Power Syst., 2014, 29(6), 3086-3091.
  • [74] MASAUD T.M., LEE K., SEN P.K., An overview of energy storage technologies in electric power systems: What is the future?, North American Power Symp. (NAPS), Arlington, TX, USA, 2010, 1-6.
  • [75] SU C.-L., WENG X.-T., CHEN C.-J., Power generation controls of fuel cell/energy storage hybrid ship power systems, Transport. Electr. Asia-Pacific (ITEC Asia-Pacific), 2014 IEEE Conference and Expo, Beijing, China, 2014, 1-6.
  • [76] KHAN M.M.S., FARUQUE M.O., NEWAZ A., Fuzzy logic based energy storage management system for MVDC power system of all electric ship, IEEE Trans. En. Conv., 2017, 32(2), 798-809.
  • [77] SCIBERRAS E.A., ZAHAWI B., ATKINSON D.J., BREIJS A., VAN VUGT J.H., Managing shipboard energy. A stochastic approach special issue on marine systems electrification, IEEE Trans. Trans. Electr., 2016, 2(4), 538-546.
  • [78] BANAEI M.R., ALIZADEH R., Simulation-based modeling and power management of all-electric ships based on renewable energy generation using model predictive control strategy, IEEE Int. Trans. Syst. Mag., 2016, 8(2), 90-103.
  • [79] CAIROLI P., DOUGAL R.A., New horizons in DC shipboard power systems. New fault protection strategies are essential to the adoption of DC power systems, IEEE Electr. Mag., 2013, 1(2), 38-45.
  • [80] CIEZKI J.G., ASHTON R.W., Selection and stability issues associated with a navy shipboard DC zonal electric distribution system, IEEE Trans. Power Del., 2000, 15(2), 665-669.
  • [81] SULLIGOI G., BOSICH D., GIADROSSI G., ZHU L., CUPELLI M., MONTI A., Multiconverter medium voltage DC power systems on ships. Constant-power loads instability solution using linearization via state feedback control, IEEE Trans. Smart Grid, 2014, 5(5), 2543-2552.
  • [82] JAKŠIĆ M., SHEN Z., CVETKOVIĆ I., BOROYEVICH D., BURGOS R., DIMARINO C., CHEN F., Medium-voltage impedance measurement unit for assessing the system stability of electric ships, IEEE Trans. En. Conv., 2017, 32(2), 829-841.
  • [83] LOGAN K.P., Intelligent diagnostic requirements of future all-electric ship integrated power system, IEEE Trans. Ind. Appl., 2007, 43(1), 139-149.
  • [84] MITRA P., VENAYAGAMOORTHY G.K., Implementation of an intelligent reconfiguration algorithm for an electric ships power system, IEEE Trans. Ind. Appl., 2011, 47(5), 2292-2300.
  • [85] BOSE S., PAL S., NATARAJAN B., SCOGLIO C.M., DAS S., SCHULZ N.N., Analysis of optimal reconfiguration of shipboard power systems, IEEE Trans. Power Syst., 2012, 27(1), 189-197.
  • [86] CHRISTOPHER E., SUMNER M., THOMAS D.W.P., WANG X., DE WILDT F., Fault location in a zonal DC marine power system using active impedance estimation, IEEE Trans. Ind. Appl., 2013, 49(2), 860-865.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7a143c3-d8f5-4202-8585-6a2c111ee182
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.