Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we introduce a rotationally-invariant noncommutative algebra that is equivalent to the canonical type.This algebra is built by extending the noncommutativity parameters to tensors. These tensors are defined with the help of additional coordinates and momenta corresponding to a rotationally-invariant system. In the frame of the rotationally-invariant noncommutative algebra we investigate a system of free particles, and systems of harmonicoscillators. The energy levels of these systems are found in noncommutative phase spave with preserved rotational symmetry.
Wydawca
Rocznik
Tom
Strony
1--13
Opis fizyczny
Bibliogr. 60 poz.
Twórcy
autor
- Ivan Franko National University of Lviv, Professor Ivan Vakarchuk Department for Theoretical Physics, 12 Drahomanov St., Lviv, 79005, Ukraine
autor
- Ivan Franko National University of Lviv, Professor Ivan Vakarchuk Department for Theoretical Physics, 12 Drahomanov St., Lviv, 79005, Ukraine
Bibliografia
- [1] D. J. Gross and P. F. Mende, “String theory beyond the Planck scale,”Nucl. Phys. B, vol. 303, no. 3, pp. 407 – 454, 1988.
- [2] M. Maggiore, “A generalized uncertainty principle in quantum gravity,”Phys. Lett. Â, vol. 304, no. 1-2, pp. 65 – 69, 1993.
- [3] E. Witten, “Reflections on the fate of spacetime,”Physics Today, vol. 49, no. 4, pp. 24–30, 1996.
- [4] N. Seiberg and E. Witten, “String theory and noncommutative geometry,”J. High Energy Phys., vol. 1999, no. 09, 1999.
- [5] S. Doplicher, K. Fredenhagen, and J. E. Roberts, “Spacetime quantization induced by classical gravity,”Phys. Lett. B, vol. 331, no. 1-2, pp. 39–44, 1994.
- [6] D. Amati, M. Ciafaloni, and G. Veneziano,“Can spacetime be probed below the string size?,”Phys. Lett. B, vol. 216, no. 1, pp. 41– 47, 1989.
- [7] G. Amelino-Camelia, N. E. Mavromatos, J. Ellis, and D. V. Nanopoulos, “On the spacetime uncertainty relations of Liouville strings and D-branes,”Mod. Phys. Lett. A, vol. 12, no. 27, pp. 2029–2035, 1997.
- [8] H. S. Snyder, “Quantized space-time,”Phys. Rev., vol. 71, no. 1,pp. 38–41, 1947.
- [9] G. Dunne, R. Jackiw, and L. Trugenberger, “Topological (Chern-Simons) quantum mechanics,”Phys. Rev. D, vol. 41, no. 2, pp. 661–666.
- [10] G. Dunne and R. Jackiw, “”Peierls substitution” and Chern-Simons quantum mechanics,”Nuclear Physics B (Proc. Suppl.),vol. 33, no. Ñ, pp. 114–118, 1991.
- [11] R. Jackiw, “Observations on noncommuting coordinates and on fields depending on them,” Ann. Henri Poincarre, vol. 4, no. 2, pp. 913–919, 2003.
- [12] C. Duval and P. A. Horváthy, “The exotic Galilei group and the ”Peierls substitution”,”Phys. Lett. B, vol. 479, no. 1-3, pp. 284–290, 2000.
- [13] R. Banerjee, “A novel approach to noncommutativity in planar quantum mechanics,” Mod. Phys. Lett. A, vol. 17, no. 11, p. 631645, 2002.
- [14] J. Gamboa, M. Loewe, and J. C. Rojas, “Noncommutative quantum mechanics,”Phys. Rev. D, vol. 64, no. 6.– Art. 067901. – 3 p., 2001.
- [15] J. Gamboa, F. Méndez, M. Loewe, and J. C. Rojas, “Noncommutative quantum mechanics: The two-dimensional central field,”Int. J. of Mod. Phys. A, vol. 17, no. 19, pp. 2555–2565, 2002.
- [16] V. P. Nair and A. P. Polychronakos, “Quantum mechanics on the noncommutative plane and sphere,” Phys. Lett. B, vol. 505, no. 1-4,pp. 267–274, 2001.
- [17] K. Bolonek and P. Kosiński, “On uncertainty relations in noncommutative quantum mechanics,” Phys. Lett. B, vol. 547, no. 1-2,pp. 51–54, 2002.
- [18] C. Duval and P. A. Horvathy, “Exotic Galilean symmetry in the noncommutative plane and the Hall effect,” J. Phys. A: Math. Gen., vol. 34, no. 47, pp. 10097–10107, 2001.
- [19] M. Chaichian, A., Demichev, P. Presnajder, M. M. Sheikh-Jabbari, and Tureanu, “Quantum theories on noncommutative spaces with nontrivial topology: Aharonov Bohm and Casimir effects,”Nuc. Phys. B, vol. 611, no. 1-3, p. 383402, 2001.
- [20] D. Sinha, B. Chakraborty, and F. G. Scholtz, “Noncommutative quantum mechanics in three dimensions and rotational symmetry,”Journal of Physics A: Mathematical and Theoretical, vol. 45,no. 10 – Art. 105308.– 23 p, 2012.
- [21] O. Bertolami, J. G. Rosa, C. M. L. de Aragao, P. Castorina, andD. Zappal:’a, “Scaling of variables and the relation between noncommutative parameters in noncommutative quantum mechanics,”Mod. Phys. Lett. A, vol. 21, no. 10, pp. 795–802, 2006.
- [22] E. F. Moreno, “Spherically symmetric monopoles in noncommutative space,” Phys. Rev. D, vol. 72, no. 4, p. 045001, 2005.
- [23] V. Galikova and P. Presnajder, “Coulomb problem in noncommutative quantum mechanics,” J. Math. Phys., vol. 54, 2013.
- [24] V. G. Kupriyanov, “A hydrogen atom on curved noncommutative space,” J. Phys. A: Math. Theor., vol. 46, no. 24, 2013.
- [25] R. Amorim, “Dynamical symmetries in noncommutative theories,”Phys. Rev. D, vol. 78, no. 10.–Art. 105003.– 7 p., 2008.
- [26] M. Bander, “Coherent states and N dimensional coordinate noncommutativity,”J. High Energy Phys., vol. 03, no. 2006, 2006.
- [27] A. Hatzinikitas and I. Smyrnakis, “The noncommutative harmonic oscillator in more than one dimension,” J. Math. Phys.,vol. 43, no. 1, pp. 113–125, 2002.
- [28] A. Kijanka and P. Kosiński, “Noncommutative isotropic harmonic oscillator,”Phys. Rev. D, vol. 70, no. 12, p. 127702, 2004.
- [29] J. Jing and J.-F. Chen, “Noncommutative harmonic oscillator in magnetic field and continuous limit,” Eur. Phys. J. C., vol. 60, no. 4,pp. 669–674, 2009.
- [30] A. Smailagic and E. Spallucci, “Feynman path integral on the non-commutative plane,” J. Phys. A: Math. Gen., vol. 36, no. 33,pp. L467–L471, 2003.
- [31] B. Muthukumar and P. Mitra, “Noncommutative oscillators and the commutative limit,” Phys. Rev. D, vol. 66, no. 2, p. 027701, 2002.
- [32] P. D. Alvarez, J. Gomis, K. Kamimura, and M. S. Plyushchay, “Anisotropic harmonic oscillator, non-commutative landau problem and exotic newtonhooke symmetry, ”Phys. Lett. B, vol. 659,no. 5, pp. 906 – 912, 2008.
- [33] A. E. F. Djemai and H. Smail, “On quantum mechanics on noncommutative quantum phase space,” Commun. Theor. Phys.,vol. 41, no. 6, pp. 837–844, 2004.
- [34] I. Dadic, L. Jonke, and S. Meljanac, “Harmonic oscillator on non-commutative spaces,” Acta Phys.Slov., vol. 55, pp. 149–164, 2005.
- [35] P. R. Giri and P. Roy, “The non-commutative oscillator, symmetry and the Landau problem,” Eur. Phys. J. C, vol. 57, no. 4, pp. 835–839, 2008.
- [36] J. B. Geloun, S. Gangopadhyay, and F. G. Scholtz, “Harmonic oscillator in a background magnetic field in noncommutative quantum phase-space,”EPL (Europhysics Letters), vol. 86, no. 5,p. 51001, 2009.
- [37] E. M. C. Abreu, M. V. Marcial, A. C. R. Mendes, and W. Oliveira, “Harmonic oscillator on noncommutative spaces,” JHEP., vol. 2013:138, 2013.
- [38] A. Saha, S. Gangopadhyay, and S. Saha, “Noncommutative quantum mechanics of a harmonic oscillator under linearized gravitational waves,” Phys. Rev. D, vol. 83, no. 2, p. 025004, 2011.
- [39] D. Nath and P. Roy, “Noncommutative anisotropic oscillator in a homogeneous magnetic field,” Ann. Phys., vol. 377, pp. 115 – 124, 2017.
- [40] Kh. P. Gnatenko and O. V. Shyiko, “Effect of noncommutativity on the spectrum of free particle and harmonic oscillator in rotationally invariant noncommutative phase space,” Mod. Phys. Lett.A, vol. 33, no. 16, p. 1850091, 2018.
- [41] A. Jellal, E. H. E. Kinani, and M. Schreiber, “Two coupled harmonic oscillators on noncommutative plane,” Int. J. Mod. Phys. A, vol. 20, no. 7, pp. 1515–1529, 2005.
- [42] I. Jabbari, A. Jahan, and Z. Riazi, “Partition function of the harmonic oscillator on a noncommutative plane,”Turk. J. Phys.,vol. 33, pp. 149–154, 2009.
- [43] B.-S. Lin, S.-C. Jing, and T.-H. Heng, “Deformation quantization for coupled harmonic oscillators on a general noncommutative space,” Mod. Phys. Lett. A, vol. 23, no. 06, pp. 445–456, 2008.
- [44] Kh. P. Gnatenko and V. M. Tkachuk, “Two-particle system with harmonic oscillator interaction in noncommutative phase space,” J. Phys. Stud., vol. 21, no. 3, p. 3001, 2017.
- [45] J. F. Santos, A. E. Bernardini, and C. Bastos, “Probing phase-space noncommutativity through quantum mechanics and thermodynamics of free particles and quantum rotors,” Physica A: Statistical Mechanics and its Applications, vol. 438, pp. 340 – 354, 2015.
- [46] Kh. P. Gnatenko, H. P. Laba, and V. M. Tkachuk, “Features of free particles system motion in noncommutative phase space and conservation of the total momentum,” Mod. Phys. Lett. A, vol. 33,no. 23, p. 1850131, 2018.
- [47] M. C. Daszkiewicz and J. Walczyk, “Classical mechanics of many particles defined on canonically deformed nonrelativistic space-time,” Mod. Phys. Lett. A., vol. 26, no. 11, pp. 819–832, 2011.
- [48] N. Isgur and G. Karl, “p-wave baryons in the quark model,” Phys.Rev. D, vol. 18, no. 11, pp. 4187–4205.
- [49] L. Glozman and D. Riska, “The spectrum of the nucleons and the strange hyperons and chiral dynamics,”Phys. Rep., vol. 268, no. 4,pp. 263 – 303, 1996.
- [50] S. Capstick and W. Roberts, “Quark models of baryon masses anddecays,”Prog. Part. Nucl. Phys., vol. 45, pp. S241 – S331, 2000.
- [51] S. Ikeda and F. Fillaux, “Incoherent elastic-neutron-scattering study of the vibrational dynamics and spin-related symmetry of protons in the khco3crystal,”Phys. Rev. B, vol. 59, no. 6, pp. 4134–4145, 1999.
- [52] F. Fillaux, “Quantum entanglement and nonlocal proton transfer dynamics in dimers of formic acid and analogues,” Chem. Phys. Lett., vol. 408, no. 4, pp. 302 – 306, 2005.
- [53] F. Hong-Yi, “Unitary transformation for four harmonically coupled identical oscillators,” Phys. Rev. A, vol. 42, no. 7, pp. 4377–4380, 1990.
- [54] F. Michelot, “Solution for an arbitrary number of coupled identical oscillators,” Phys. Rev. A, vol. 45, no. 7, pp. 4271–4276, 1992.
- [55] M. A. Ponte, M. C. Oliveira, and M. H. Y. Moussa, “Decoherence in a system of strongly coupled quantum oscillators. i. symmetric network,” Phys. Rev. A, vol. 70, no. 2. Art. 022324. 16 p., 2004.
- [56] M. A. Ponte, S. S. Mizrahi, and M. H. Y. Moussa, “Networks of dissipative quantum harmonic oscillators: A general treatment,” Phys. Rev. A, vol. 76, no. 3. Art. 032101. 10 p., 2007.
- [57] M. B. Plenio, J. Hartley, and J. Eisert, “Dynamics and manipulation of entanglement in coupled harmonic systems with many degrees of freedom,” New Journal of Physics, vol. 6. Art. 36. 39 p.,2004.
- [58] Kh. P. Gnatenko and V. M. Tkachuk, “Hydrogen atom in rotationally invariant noncommutative space,” Phys. Lett. A, vol. 378,no. 47, pp. 3509–3515, 2014.
- [59] Kh. P. Gnatenko, “System of interacting harmonic oscillators inrotationally in variant noncommutative phase space,”Phys. Lett.A, vol. 382, no. 46, pp. 3317 – 3324, 2018.
- [60] Kh. P. Gnatenko, “Harmonic oscillator chain in noncommutative phase space with rotational symmetry,” Ukr. J. Phys., vol. 64, no. 2,pp. 131–136, 2019.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d79e7a82-fef3-4076-9687-570a2cf5becd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.