PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physiological responses of nonmetallicolous and serpentine Silene vulgaris ecotypes cultivated in different soils

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Silene vulgaris ecotypes Wiry and Gajków, originating from a serpentine heap and a natural site, respectively, were cultivated from seeds on two substrates. The former was a serpentine heap located in Wiry (Poland, Lower Silesia), the latter – natural soil located in Gajków (Poland, Lower Silesia). The growth of both ecotypes on the Wiry soil was strongly inhibited. The Wiry ecotype grown on the serpentine heap accumulated more macro-, micro-nutrients and heavy metals (Ni, Co, Cr) than ecotype Gajków. Enzyme pyrogallol peroxidase was more active in the leaves of the Wiry ecotype grown only on Wiry soil. Ecotype Gajków, grown on the serpentine heap, was characterized by higher non-protein thiol, total polyphenol and anthocyanin content. The results obtained in the study indicated heterogeneous responses between ecotypes, depending on the applied substrate, while parallel studies of tolerant and sensitive populations made possible the study of the taxon’s tolerance mechanisms to heavy metals.
Słowa kluczowe
Rocznik
Strony
5--16
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Wrocław University of Environmental and Life Sciences, Department of Botany and Plant Ecology, Norwida 25, 50-375 Wrocław, Poland
  • Wrocław University of Environmental and Life Sciences, Department of Plant Nutrition, Norwida 25, 50-375 Wrocław, Poland
Bibliografia
  • [1] ERNST W.H.O., Bioavailability of heavy metals and decontamination of soils by plants, Appl. Geochem., 1996, 11, 163–167. DOI: 10.1016/0883-2927(95)00040-2.
  • [2] CABAŁA J., BADERA J., Heavy metals in Poland. Geology, mining history, [In:] M. Wierzbicka (Ed.), Ecotoxicology. Plants, soils, metals, Wyd. UW, Warsaw 2015, 137–162 (in Polish).
  • [3] KOSZELNIK-LESZEK A., BIELECKI K., Response of selected Silene vulgaris ecotypes to nickel, Pol. J. Environ. Stud., 2013, 22, 6, 1741–1747.
  • [4] WIERZBICKA M., PANUFNIK D., The adaptation of Silene vulgaris to the growth on a calamine waste heap (S. Poland), Environ. Pollut., 1998, 101, 415–426. DOI: 10.1016/s0269-7491(98)00012-8.
  • [5] MUSZYŃSKA E., LABUDDA M., RÓŻAŃSKA E., HANUS-FAJERSKA E., KOSZELNIK-LESZEK A., Structural, physiological and genetic diversification of Silene vulgaris ecotypes from heavy metal-contaminated areas and their synchronous in vitro cultivation, Planta, 2019, 249, 1761–1778. DOI: 10.1007/s00425-019-03123-4.
  • [6] REDDY A.M., KUMAR S.G., JYOTHSNAKUMARI G., THIMMANAIK S., SUDHAKAR C., Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.), Chemosphere, 2005, 60 (1), 97–104. DOI: 10.1016/j.chemosphere.2004.11.092.
  • [7] SŁOMKA A., LIBIK-KONIECZNY M., KUTA E., MISZALSKI Z., Metalliferous and non-metalliferous populations of Viola tricolor represent similar mode of antioxidative response, J. Plant. Physiol., 2008, 165 (15), 1610–1619. DOI: 10.1016/j.jplph.2007.11.004.
  • [8] KANDZIORA-CIUPA M., CIEPAŁ R., NADGÓRSKA-SOCHA A., BARCZYK G., A comparative study of heavy metal accumulation and antioxidant responses in Vaccinium myrtillus L. leaves in polluted and non-polluted areas, Environ. Sci. Pollut. Res. Int., 2013, 20 (7), 4920–4932. DOI: 10.1007/s11356-012-1461-4.
  • [9] MALINOWSKA K., SMOLIK B., Physiological and biochemical activity of spring wheat (Triticum vulgare) under the conditions of stress caused by cadmium, Environ. Prot. Eng., 2011, 37, 1, 73–81.
  • [10] GUPTA D.K., TOHOYAMA H., JOHO M., Changes in the levels of phytochelatins and related metal-binding peptides in chickpea seedlings exposed to arsenic and different heavy metal ions, J. Plant. Res., 2004, 117, 253–256. DOI: 10.1007/s10265-004-0152-8.
  • [11] DE KNECHT J.A., VAN BAREN J., TEN BOOKUM W.M.,WONG FONG SANG W.F., KOEVOETS P.L.M., SCHAT H., Synthesis and degradation of phytochelatins in cadmium-sensitive and cadmium tolerant Silene vulgaris, Plant Sci., 1995, 106, 9–18. DOI: 10.1016/0168-9452(95)04066-4.
  • [12] SETH C.S., CHATURVEDI P.K., MISRA V., The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L., Ecotox. Environ. Safe., 2008, 71, 76–85. DOI: 10.1016/j.ecoenv.2007.10.030.
  • [13] PUKACKA S., PUKACKI P., Seasonal changes in antioxidant level in Scots pine (Pinus sylvestris L.) needles exposed to industrial pollution. II. Enzymatic scavenders activities, Acta. Physiol. Plant. (Poland), 2000, 4, 457–464. DOI: 10.1007/s11738-000-0089-z.
  • [14] ŹRÓBEK-SOKOLNIK A., GÓRSKA K., GÓRECKI R.J., The activity of antioxidant enzymes in suspension cultured tobacco cells treated with heavy metals, Pol. J. Nat. Sci., 2007, 22 (4), 704–713. DOI: 10.2478/v10020-007-0060-1.
  • [15] KOVÁČIK J., KLEJDUSB B., HEDBAVNY J., ZOŃ J., Significance of phenols in cadmium and nickel uptake, J. Plant. Physiol., 2011, 168, 576–584. DOI: 10.1016/j.jplph.2010.09.011.
  • [16] HALE K.L., TUFAN H.A., PICKERING I.J., GEORGE G.N., TERRY N., PILON M., PILON-SMITHS E.A.H., Anthocyanins facilitate tungsten accumulation in Brassica, Physiol. Plant., 2002, 116, 351–358. DOI: 10.1034/j.1399-3054.2002.1160310.x.
  • [17] EGNER H., RIEHM H., DOMINGO W.R., Untersuchungen über die Chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extraktionsmethoden zur Phosphor- und Kaliumbestimmung, Kungliga Lantbrukshögskolans Annaler, 1960, 26, 199–215.
  • [18] SCHACHTSCHABEL P., Die Bestim mungdes Manganversorgungsgrades von Böden und seine Beziehung zum Auftreten der Dörrfleckenkrankheitbei Hafer, Zeitsch. Pflanz. Düng, Bod., 1957, 78 (123), 147.
  • [19] RINKIS G.J., Methods of fast colorimetric determination of microelements in biologic species, Izd. Akad. Nauk Latv. SSR, Riga 1963 (in Latvian).
  • [20] KNÖRZER O.C., DURNER J., BOGER P., Alterations in the antioxidative system of suspension-cultured soybean cells (Glycine max) induced by oxidative stress, Physiol. Plant., 1996, 97, 388–396. DOI:10.1034/j.1399-3054.1996.970225.x.
  • [21] JULKUNEN-TIITTO R., Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics, J. Agric. Food Chem., 1985, 33 (2), 213–217. DOI: 10.1021/jf00062a013.
  • [22] POLITYCKA B., GOLCZ A., Content of chloroplast pigments and anthocyanins in the leaves of Ocimum basilicum L. depending on nitrogen doses, Folia Hortic. Ann., 2004, 16 (1), 23–29.
  • [23] MAAS F.M., DE KOK L.J., PETERS J.L., KUIPER P.J.C., A comparative study of the effects of H2S and SO2 fumigation on the growth and accumulation of sulfate and sulfhydryl compounds in Trifolium pratense L., Glycine max MERR and Phaseolus vulgaris L., J. Exp. Bot., 1987, 38, 1459–1469. DOI:10.1093/jxb/38.9.1459.
  • [24] GONELLI C., GALARDI F., GABBRIELLI R., Nickel and copper tolerance and toxicity in three Tuscan population of Silene paradoxa, Physiol. Plant, 2001, 113, 507–514. DOI: 10.1034/j.1399-3054.2001.1130409.x.
  • [25] ANTOSIEWICZ D.M., The relationship between constitutional and inducible Pb-tolerance and tolerance to mineral deficits in Biscutella laevigata and Silene inflata, Environ. Exp. Bot., 1995, 35, 55–69. DOI: 10.1016/0098-8472(94)00026-2.
  • [26] KRUPA Z., SIEDLECKA A., SKÓRZYŃSKA-POLIT E., MAKSYMIEC W., Heavy metal interactions with plant nutrients, [In:] M.N.V Prasad, K. Strzałka (Eds.), Physiology and biochemistry of metal toxicity and tolerance in plants, Kluwer Academic Publishers, Dordrecht 2002, 287–301. DOI: 10.1007/978-94 -017-2660-3_11.
  • [27] PROCTOR J., MCGOWAN I.D., Influence of magnesium on nickel toxicity, Nature, 1976, 260, 134. DOI: 10.1038/260134a0.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d79d6952-c481-4c53-9462-cd624216619e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.