PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Provenance and tectonic setting of the Middle Eocene lower Akhoreh Formation, Nain area, Central Iran, assessed using petrography and geochemistry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Middle Eocene Akhoreh Formation is superbly exposed in the western corner of the Central-East Iranian Microcontinent (CEIM). This formation covered the northeastern flank of the Cretaceous Nain Ophiolite Mélange (NOM) and is adjacent to the Paleogene Urmieh–Dokhtar Magmatic Arc (UDMA) formed in the southwest of the CEIM. This terrigenous succession is composed of a thin basal conglomerate followed by mostly pink to purple sandstones alternating with shales. The clast composition and clast imbrication of the conglomerates show local source areas towards the north-north-east. Modal components of lower Akhoreh Formation sandstones reveals immature lithic arkose (Q8F48L44) and feldspathic litharenite (Q8F44L48) sandstones that are rich in mafic and ultramafic igneous and volcanic rock fragments. Mafic to ultramafic source rocks are also indicated by geochemical data (enrichment of Mg, Cr and Ni and Cr/V) in the sandstone and shale samples analyzed. However, geochemical data suggests an intermediate igneous rock origin for the shale samples studied, most likely from the nearby continental arc. Based on petrographic data, these sandstones have characteristics of a transitional to undissected arc tectonic setting. Geochemical discrimination diagrams using major and trace elements indicate an oceanic island arc tectonic setting for the lower Akhoreh Formation sandstones and shales, probably due to a predominance of ophiolitic source rocks. Furthermore, the chemical index of alteration and modal analysis indicate a weak to moderate degree of chemical weathering with arid climatic conditions in the source area. The exhumed NOM, together with the UDMA in the southwest, were dominant sources of sediment to the lower Akhoreh Formation, that lay to the northeast in a local retroarc basin of the Central Iranian Microplate, during the Middle Eocene.
Rocznik
Strony
art. no. 14
Opis fizyczny
Bibliogr. 73 poz., fot., map., rys., tab., wykr.
Twórcy
  • University of Isfahan, Faculty of Sciences, Department of Geology, ISFAHAN 81744, Iran
  • University of Isfahan, Faculty of Sciences, Department of Geology, ISFAHAN 81744, Iran
  • Shahrood University of Technology, Faculty of Earth Sciences, Shahrood, Iran
Bibliografia
  • 1. Affolter, M.D., Ingersoll, R.V., 2019. Quantitative analysis of volcanic lithic fragments. Journal of Sedimentary Research, 89: 479-486; https://doi .org/10.2110/jsr.2019.30
  • 2. Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monie, P., Meyer, B., Wortel, R., 2011. Zagros orogeny: a subduction-dominated process. Geological Magazine, 148: 692-725; https://doi.org/10.1017/S001675681100046X
  • 3. Allen, M., Jackson, J., Walker, R., 2004. Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates. Tectonics, 23: TC2008; https://doi.org/10.1029/2003TC001530
  • 4. Armstrong-Altrin, J.S., 2009. Provenance of sands from Cazones, Acapulco, and Bahía Kino beaches, México. Revista Mexicana Ciencias Geológicas, 26: 764-782.
  • 5. Armstrong-Altrin, J.S., 2020. Detrital zircon U-Pb geochronology and geochemistry of the Riachuelos and Palma Sola beach sediments, Veracruz State, Gulf of Mexico: a new insight on palaeoenvironment. Journal of Palaeogeography, 9: 1-28; https://doi.org/10.1186/s42501-020-00075-9
  • 6. Armstrong-Altrin, J.S., Nagarajan, R., Balaram, V., Natalhy-Pineda, O., 2015. Petrography and geochemistry of sands from the Chachalacas and Veracruz beach areas, western Gulf of Mexico, Mexico: Constraints on provenance and tectonic setting. Journal of South Ameri can Earth Sciences, 64: 199-216; https://doi.Org/10.1016/j.jsames.2015.10.012
  • 7. Armstrong-Altrin, J.S., Madhavaraju, J., Vega-Bautista, F., Ramos-Vázquez, M.A., Pérez-Alvarado, B.Y., Kasper-Zu- billaga, J.J., Bessa, A.Z.E., 2021. Mineralogy and geochemistry of Tecolutla and Coatzacoalcos beach sediments, SW Gulf of Mexico. Applied Geochemistry, 134: 105103; https://doi.org/10.1016/j.apgeochem.2021.105103
  • 8. Armstrong-Altrin, J.S., Ramos-Vázquez, M.A., Madhavaraju, J., Marca-Castillo, M.E., Machain-Castillo, M.L. Márquez-García, A.Z., 2022. Geochemistry of marine sediments adjacent to the Los Tuxtlas Volcanic Complex, Gulf of Mexico: constraints on weathering and provenance. Applied Geochemistry, 141: 105321; https://doi.org/10.1016/j.apgeochem.2022.105321
  • 9. Barrier, E., Vrielynck, B., Brouillet, J.-F., Brunet, M.-F., eds., 2018. Palaeotectonic reconstruction of the central Tethyan realms. Paris, Commission for the Geological Map of the World; CGMW/CCGM.
  • 10. Basu, A., Bickford, M.E., Deasy, R., 2016. Inferring tectonic provenance of siliciclastic rocks from their chemical compositions: a dissent. Sedimentary Geology, 336: 26-35; https://doi.org/10.1016/j.sedgeo.2015.11.013
  • 11. Bhatia, M.R., 1985. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: provenance and tectonic control. Sedimentary Geology, 45: 97-113; https://doi.org/10.1016/0037-0738(85)90025-9
  • 12. Bhatia, M.R., Crook, K.A.W., 1986. Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92: 181-193; https://doi.org/10.1007/BF00375292
  • 13. Boggs, S., 2009. Petrology of Sedimentary Rocks. Cambridge University Press, Cambridge.
  • 14. Chiu, H.-Y., Chung, S.-L., Zarrinkoub, M.H., Mohammadi, S.S., Khatib, M.M., Iizuka, Y., 2013. Zircon U-Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos, 162-163: 70-87; https://doi.org/10.1016/j.lithos.2013.01.006
  • 15. Critelli, S., 2018. Provenance of Mesozoic to Cenozoic circum-Mediterranean sandstones in relation to tectonic setting. Earth-Science Reviews, 185: 624-648; https://doi.org/10.1016/j.earscirev.2018.07.001
  • 16. Critelli, S., Pera, E., Ingersoll, R.V., 1997. The effects of source lithology, transport, deposition and sampling scale on the composition of southern California sand. Sedimentology, 44: 653-671; https://doi.org/10.1046/j.1365-3091.1997.d01-42.x
  • 17. Cullers, R.L., 2000. The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos, 51: 181-203; https://doi.org/10.1016/S0024-4937(99)00063-8
  • 18. Cullers, R.L., Podkovyrov, V.N., 2000. Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: Implications for mineralogical and provenance control, and recycling. Precambrian Research, 104: 77-93; https://doi.org/10.1016/S0301-9268(00)00090-5
  • 19. Davoudzadeh, M., 1969. Geologie und Petrographie des Gebietes nördlich von Nain, Zentral-Iran. Ph.D. Thesis, Eidgenossischen Technischen Hochschule (ETH), Zurich.
  • 20. Davoudzadeh, M., 1972. Geology and petrography of the area north of Nain, central-Iran. Geological Survey of Iran, 14.
  • 21. Davoudzadeh, M., Lammerer, B., Weber-Diefenbach, K., 1997. Paleogeography, stratigraphy, and tectonics of the Tertiary of Iran. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 205: 33-67; https://doi.org/10.1127/njgpa/205/1997/33
  • 22. Dickinson, W.R., 1970. Interpreting detrital modes of graywacke and arkose. Journal of Sedimentary Petrology, 40: 695-707; https://doi.org/10.1306/74D72018-2B21-11D7-8648000102C1865D
  • 23. Dickinson, W.R., 1985. Interpreting provenance relation from detri- tal modes of sandstones. In: Provenance of Arenites (ed. G.G. Zuffa): 333-363. Dordrecht, Reidel Publishing Company; https://doi.org/10.1007/978-94-017-2809-6_15
  • 24. Dickinson, W.R., Beard, L.S., Brakenridge, G.R., Erjavec, J.L., R.C., F., Inman, K.F., Knepp, R.A., Lindberg, F.A., Ryberg, P.T., 1983. Provenance of North Ameri can Phanerozoic sandstones in relation to tectonic setting. GSA Bulletin, 94: 222-235; https://doi.org/10.1130/0016-7606(1983)94<222:PONAPS>2.0 .CO;2
  • 25. Fedo, C.M., Wayne Nesbitt, H., Young, G.M., 1995. Unraveling the effects of potassium metasomatism in sed imentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23: 921-924; https://doi.org/10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2
  • 26. Folk, R.L., 1980. Petrology of Sedimentary Rocks. Hemphill Publishing, Austin, Texas.
  • 27. Garzanti, E., Resentini, A., 2016. Provenance control on chemical indices of weathering (Taiwan river sands). Sedimentary Geology, 336: 81-95; https://doi.org/10.1016/j.sedgeo.2015.06.013
  • 28. Garzanti, E., Ando, S., Scutellr, M., 2000. Actualistic ophiolite provenance: The Cyprus Case. The Journal of Geology, 108: 199-218; https://doi.org/10.1086/314391
  • 29. Garzanti, E., Vezzoli, G., Ando, S., 2002. Modern sand from obducted ophiolite belts (Sultanate of Oman and United Arab Emirates). The Journal of Geology, 110: 371-391; https://doi.org/10.1086/340440
  • 30. Ghaznavi, A.A., Khan, I., Quasim, M.A., Ahmad, A.H.M., 2018. Provenance, tectonic setting, source weathering and palaeoenvironmental implications of Middle-Upper Jurassic rocks of Ler dome, Kachchh, western India: iInferences from petrography and geochemistry. Geochemistry, 78: 356-371; https://doi.org/10.1016/j.chemer.2018.06.002
  • 31. Gholami-Zadeh, P., Adabi, M.H., Hisada, K.-i., Hosseini-Barzi, M., Sadeghi, A., Ghassemi, M.R., 2017. Revised version of the Cenozoic collision along the Zagros Orogen, insights from Cr-spinel and sandstone modal analyses. Scientific Reports, 7: 10828; https://doi.org/10.1038/s41598-017-11042-1
  • 32. Gu, X.X., Liu, J.M., Zheng, M.H., Tang, J.X., Qi, L., 2002. Provenance and tectonic setting of the Proterozoic turbidites in Hunan, south China: geochemical evidence: Journal of Sedimentary Research, 72: 393-407; https://doi.org/10.1306/081601720393
  • 33. Hashemi Azizi, S.H., Rezaee, P., Jafarzadeh, M., Meinhold, G., Moussavi Harami, S.R., Masoodi, M., 2018. Early Mesozoic sedimentary?tectonic evolution of the Central-East Iranian Microcontinent: Evidence from a provenance study of the Nakhlak Group. Geochemistry (Chemie der Erde), 78: 340-355; https://doi.org/10.1016/j.chemer.2018.06.003
  • 34. Hassanzadeh, J., Wernicke, B.P., 2016. The Neotethyan Sanandaj-Sirjan zone of Iran as an archetype for passive margin-arc transitions. Tectonics, 35: 586-621; https://doi.org/10.1002/2015TC003926
  • 35. Hayashi, K.-I., Fujisawa, H., Holland, H.D., Ohmoto, H., 1997. Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61: 4115-4137; https://doi.org/10.1016/S0016-7037(97)00214-7
  • 36. Hutchinson, C.S., 1974. Laboratory Handbook of Petrography Techniques. Wiley, New York.
  • 37. Ingersoll, R.V., Fullard, T.F., Ford, R.L., Grimm, J.P., Pickle, J.D., Sares, S.W., 1984. The effect of grain size on detrital modes; a test of the Gazzi-Dickinson point-counting method. Journal of Sedimentary Petrology, 54: 103-116; https://doi.org/10.1306/212F83B9-2B24-11D7-8648000102C1865D
  • 38. Jafarzadeh, M., Shoghani-Motlagh, M., Mousivand, F., Criniti, S., Critelli, S., 2022. Compositional and geochemical signatures of Oligocene volcanoclastic sandstones of Abbasabad-Kahak area, NE Iran: iImplications for provenance relations and paleogeography. Marine and Petroleum Geology, 139: 105605; https://doi.org/10.1016/j.marpetgeo.2022.105605
  • 39. Kazemi, Z., Ghasemi, H., Tilhac, R., Griffin, W., Moghadam, H.S., O'Reilly, S., Mousivand, F., 2019. Late Cretaceous subduction-related magmatism on the southern edge of Sabzevar basin, NE Iran. Journal of the Geological Society, 176: 530-552; https://doi.org/10.1144/jgs2018-076
  • 40. Malekzadeh, M., Hosseini-Barzi, M., Sadeghi, A., Critelli, S., 2020. Geochemistry of Asara Shale member of Karaj Formation, Central Alborz, Iran: Provenance, source weathering and tectonic setting. Marine and Petroleum Geology, 121: 104584; https://doi.org/10.1016/j.marpetgeo.2020.104584
  • 41. Mallah, M., Salehi, M.A., Jafarzadeh, M., Mazroei Sebdani, Z., 2022. Facies and sedimentary environment of the lower Akhoreh Fm (Middle Eocene), Shurab section, north of Nain. Applied Sedimentology, 10: 169-185; https://doi.org/10.22084/PSJ.2021.25100.1315
  • 42. Marsaglia, K.M., Barone, M., Critelli, S., Busby, C., Fackler-Ad- ams, B., 2016. Petrography of volcaniclastic rocks in intra-arc volcano-bounded to fault-bounded basins of the Rosario segment of the Lower Cretaceous Alisitos oceanic arc, Baja California, Mexico. Sedimentary Geology, 336: 138-146; https://doi.org/10.1016/j.sedgeo.2015.11.008
  • 43. Mattei, M., Cifelli, F., Muttoni, G., Rashid, H., 2015. Post-Cimmerian (Jurassic-Cenozoic) paleogeography and vertical axis tectonic rotations of Central Iran and the Alborz Mountains. Journal of Asian Earth Sciences, 102: 92-101; https://doi.org/10.1016/j.jseaes.2014.09.038
  • 44. McLennan, S.M., Taylor, S.R., Eriksson, K.A., 1983. Geochemistry of Archean shales from the Pilbara Supergroup, Western Australia. Geochimica et Cosmochimica Acta, 47: 1211-1222; https://doi.org/10.1016/0016-7037(83)90063-7
  • 45. McLennan, S.M., Hemming, S., McDaniel, D.K., Hanson, G.N., 1993. Geochemical approaches to sedimentation, provenance and tectonics. GSA Special Paper, 284: 21-40; https://doi.org/10.1130/SPE284-p21
  • 46. Meinhold, G., Kostopoulos, D., Reischmann, T., Frei, D., BouDagher-Fadel, M.K., 2009. Geochemistry, provenance and stratigraphic age of metasedimentary rocks from the eastern Vardar suture zone, northern Greece. Palaeogeography, Palaeoclimatology, Palaeoecology, 277: 199-225; https://doi.org/10.1016/j.palaeo.2009.04.005
  • 47. Mouthereau, F., Lacombe, O., Vergés, E., 2012. Building the Zagros collisional orogen: Timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics, 532-535: 27-60; https://doi.org/10.1016Zj.tecto.2012.01.022
  • 48. Nesbitt, H.W., Young, G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299: 715-717; https://doi.org/10.1038/299715a0
  • 49. Pettijohn, F.J., Potter, P.E., Siever, R., 1972. Sand and Sandstone. Springer, Berlin.
  • 50. Pirnia, T., Arai, S., Torabi, G., 2013. A better picture of the mantle section of the Nain Ophiolite inferred from detrital chromian spinels. The Journal of Geology, 121: 645-661; https://doi.org/10.1086/673175
  • 51. Pirnia, T., Saccani, E., Torabi, G., Chiari, M., Goričan, Š., Barbero, E., 2020. Cretaceous tectonic evolution of the Neo-Tethys in Central Iran: evidence from petrology and age of the Nain-Ashin ophiolitic basalts. Geoscience Frontiers, 11: 57-81; https://doi.org/10.1016/j.gsf.2019.02.008
  • 52. Pourdivanbeigi Moghaddam, S., Salehi, M.A., Jafarzadeh, M., Zohdi, A., 2020. Provenance, palaeoweathering and tectonic setting of the Ediacaran Bayandor Formation in NW Iran: Implications for the northern Gondwana continental margin during the late Neoproterozoic. Journal of African Earth Sciences, 161: 103670; https://doi.org/10.1016/j.jafrearsci.2019.103670
  • 53. Purevjav, N., Roser, B., 2013. Geochemistry of Silurian-Carboniferous sedimentary rocks of the Ulaanbaatar terrane, Hangay-Hentey belt, central Mongolia: provenance, paleoweathering, tectonic setting, and relationship with the neighbouring Tsetserleg terrane. Geochemistry, 73: 481-493; https://doi.org/10.1016/j.chemer.2013.03.003
  • 54. Ramezani, J., Tucker, R.D., 2003. The Saghand Region, Central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana Tectonics. American Journal of Science, 303: 622-665; https://doi.org/10.2475/ajs.303.7.622
  • 55. Ramos-Vázquez, M.A., Armstrong-Altrin, J.S., 2019. Sediment chemistry and detrital zircon record in the Bosque and Paseo del Mar coastal areas from the southwestern Gulf of Mexico. Marine and Petroleum Geology, 110: 650-675; https://doi.org/10.1016/j.marpetgeo.2019.07.032
  • 56. Ramos-Vázquez, M.A., Armstrong-Altrin, J.S., Madhavaraju, J., Gracia, A., Salas-de-León, D.A., 2022. Mineralogy and Geochemistry of Marine Sediments in the Northeastern Gulf of Mexico. In: Geochemical Treasures and Petrogenetic Processes (eds. J.S. Armstrong-Altrin, K. Pandarinath and S. Kumar Verma): 153-183. Springer; https://doi.org/10.1007/978-981-19-4782-7_7
  • 57. Roser, B.P., Korsch, R.J., 1986. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. Geology, 94: 635-650; https://doi.org/10.1086/629071
  • 58. Rudnick, R.L., Gao, S., 2003. Composition of the Continental Crust. Elsevier; https://doi.org/10.1016/B0-08-043751-6/03016-4
  • 59. Salehi, M.A., Moussavi-Harami, S.R., Mahboubi, A., Wilmsen, M., Heubeck, C., 2014. Tectonic and paleogeographic implications of compositional variations within the siliciclastic Ab-Haji Formation (Lower Jurassic, east Central Iran). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 271: 21-48; https://doi.org/10.1127/0077-7749/2014/0373
  • 60. Shafaii Moghadam, H., Whitechurch, H., Rahgoshay, M., Monsef, I., 2009. Significance of Nain-Baft ophiolitic belt (Iran): short-lived, transtensional Cretaceous back-arc oceanic basins over the Tethyan subduction zone. Comptes Rendus Geosciences, 341: 1016-1028; https://doi.org/10.1016/j.crte.2009.06.011
  • 61. Shirdashtzadeh, N., Torabi, G., 2020. Serpentinization and chloritization of metamorphosed lherzolites in Darreh-Deh (east of Nain Ophiolite, Central Iran): calcium source for rodingitization and tremolitization. Neues Jahrbuch für Mineralogie Abhandlungen, 196: 179-191; https://doi.org/10.1127/njma/2019/0163
  • 62. Shirdashtzadeh, N., Torabi, G., Meisel, T., Arai, S., Bokhari, S.N.H., Samadi, R., Gazel, E., 2014. Origin and evolution of metamorphosed mantle peridotites of Darreh Deh (Nain Ophiolite, Central Iran): Implications for the Eastern Neo-Tethys evolution. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 273: 89-120; https://doi.org/10.1127/0077-7749/2014/0418
  • 63. Shirdashtzadeh, N., Kachovich, S., Aitchison, J.C., Samadi, R., 2015. Mid-Cretaceous radiolarian faunas from the Ashin Ophiolite (western Central-East Iranian Microcontinent). Cretaceous Research, 56: 110-118; https://doi.org/10.1016/j.cretres.2015.04.003
  • 64. Suttner, L.J., Dutta, P.K., 1986. Alluvial sandstone composition and paleoclimate; I, Framework mineralogy. Journal of Sedimentary Petrology, 56: 329-345; https://doi.org/10.1306/212F8909-2B24-11D7-8648000102C1865D
  • 65. Tadayon, M., Rossetti, F., Zattin, M., Nozaem, R., Calzolari, G., Madanipour, S., Salvini, F., 2017. The Post-Eocene evolution of the Doruneh Fault Region (Central Iran): the intraplate response to the reorgani zation of the Arabia-Eurasia Collision Zone. Tectonics, 36: 3038-3064; https://doi.org/10.1002/2017TC004595
  • 66. Tadayon, M., Rossetti, F., Zattin, M., Calzolari, G., Nozaem, R., Salvini, F., Faccenna, C., Khodabakhshi, P., 2019. The long-term evolution of the Doruneh Fault region (Central Iran): a key to understanding the spatio-temporal tectonic evolution in the hinterland of the Zagros convergence zone. Geologi cal Journal, 54: 1454-1479; https://doi.org/10.1002/gj.3241
  • 67. Taheri, A., Jafarzadeh, M., Armstrong-Altrin, J., Mirbagheri, S.R., 2018. Geochemistry of siliciclastic rocks from the Shemshak Group (Upper Triassic-Middle Jurassic), northeastern Alborz, northern Iran: implications for palaeoweathering, provenance, and tectonic setting. Geological Quarterly, 62 (3): 522-535; https://doi.org/10.7306/gq.1433
  • 68. Torabi, G., Shirdashtzadeh, N., Arai, S., Koepke, J., 2011. Paleozoic and Mesozoic ophiolites of Central Iran: amphibolites from Jandaq, Posht-e-Badam, Nain and Ashin ophiolites. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 262: 227-240; https://doi.org/10.1127/0077-7749/2011/0194
  • 69. Ulmer-Scholle, D.S., Scholle, P.A., Schieber, J., Raine, R.J., 2015. A color guide to the petrography of sandstones, siltstones, shales and associated rocks. AAPG Memoir, 109; https://doi.org/10.1306/M1091304
  • 70. Verdel, C., Wernicke, B.P., Hassanzadeh, J., Guest, B., 2011. A Paleogene extensional arc flare-up in Iran. Tectonics, 30: TC3008; https://doi.org/10.1029/2010TC002809
  • 71. Verma, S.P., Armstrong-Altrin, J.S., 2013. New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology, 355: 117-133; https://doi.org/10.1016/j.chemgeo.2013.07.014
  • 72. Wilmsen, M., Fursich, F.T., Seyed-Emami, K., Majidifard, M.R., 2009. An overview of the stratigraphy and facies development of the Jurassic System on the Tabas Block, east-central Iran. Geological Society Special Publications, 312: 323-343; https://doi.org/10.1144/SP312.15
  • 73. Zaid, S.M., 2015. Geochemistry of sandstones from the Pliocene Gabir Formation, north Marsa Alam, Red Sea, Egypt: implication for provenance, weathering and tectonic setting. Journal of African Earth Sciences, 102: 1-17; https://doi.org/10.1016/j.jafrearsci.2014.10.016
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d798cd29-364c-4f10-9791-fec31d0b62d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.