PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Assessment of landslide hazard from tree-ring eccentricity and from compression wood : a comparison

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We have compared maps of landslide activity and hazard, developed with the use of two different dendrochronological indicators: tree-ring eccentricity and reaction (compression) wood. The maps were prepared based on 125 Norway spruce (Picea abies L. Karst.) trees growing at 44 sampling points, distributed over an area of 3.75 km2. In general, the two maps show similar patterns of landslide activity. However, tree-ring eccentricity yielded a greater number of dated events (246) compared to compression wood (129). Besides the differences in the absolute values of dating results, the general landslide activity and hazard zonation based on both disturbances are similar. Both growth disturbances develop as a result of stem tilting. Eccentricity develops after slight tilting, while compression wood is developed when tilting is more significant. Because of the differences in the strength of disturbing factors, which cause the development of compression wood and growth eccentricity, the best approach would be to combine the results of dating obtained from the two methods. The dendrochronological analysis of tree growth disturbances (eccentric growth and compression wood) is a promising approach for determining landslide hazards in forested mountain areas and can be applied in spatial management.
Rocznik
Strony
296--301
Opis fizyczny
Bibliogr. 35 poz., rys., wykr.
Twórcy
  • University of Silesia in Katowice, Faculty of Earth Sciences, Będzińska 60, 41-200 Sosnowiec, PoIand
  • University of Silesia in Katowice, Faculty of Earth Sciences, Będzińska 60, 41-200 Sosnowiec, PoIand
  • University of Silesia in Katowice, Faculty of Earth Sciences, Będzińska 60, 41-200 Sosnowiec, PoIand
  • AGH - University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. Alcátara-Ayala, I., 2002. Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphology, 47: 107-124.
  • 2. ArcGIS Help, 2017. Comparing interpolation methods. Available at: http://desktop.arcgis.com/en/arcmap/latest/tools/3d-analyst-toolbox/comparing-interpolation-methods.htm.
  • 3. Bollschweiler, M., Stoffel, M., Ehmisch, M., Monbaron, M., 2007. Reconstructing spatio-temporal patterns of debris-flow activity with dendrogeomorphological methods. Geomorphology, 87: 337-351.
  • 4. Casteller, A., Stökli, V., Villalba, R., Mayer, A.C., 2007. An evaluation of dendroecological indicators of snow avalanches in the Swiss Alps. Arctic, Antarctic, and Alpine Research, 39: 218-222.
  • 5. García-Davalillo, J.C., Herrera, G., Notti, D., Strozzi, T., Álvarez Fernádez, I., 2014. DInSAR analysis of ALOS PALSAR images for the assessment of very slow landslides: the Tena Valley case study. Landslides, 11 : 225-246.
  • 6. Gätner, H., Nievergelt, D., 2010. The core-microtome: a new tool for surface preparation on cores and time series analysis of varying cell parameters. Dendrochronologia, 28: 85-92.
  • 7. Glenn, N.F., Streutker, D.R., Chadwick, D.J., Thackray, G.D., Dorsch, S.J., 2006. Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology, 73: 131-148.
  • 8. Hejnowicz, Z., 2002. Anatomia i histogeneza roślin naczyniowych (in Polish). PWN, Warszawa.
  • 9. Hess, M., 1965. Vertical climatic vertical zones in the Polish Western Carpathians (in Polish with English summary). Zeszyty Naukowe UJ 115, Prace Geograficzne, 11: 1-265.
  • 10. Highland, L.M., 2003. An Account of Preliminary Landslide Damage and Losses Resulting from the February 28, 2001, Nisqually, Washington, Earthquake. U.S. Geological Survey Reports. Open-File Report 2003, 11: 48.
  • 11. Kjekstad, O., Highland, L., 2009. Economic and social impacts of landslides. In: Landslides Disaster Risk Reduction (eds. K. Sassa and P. Canuti): 573-587. Springer-Verlag Berlin Heidelberg, New York.
  • 12. Klose, M., Damm, B., Terhorst, B., 2014. Landslide cost modeling for transportation infrastructures: a methodological approach. Landslides, 12: 321-334.
  • 13. Lang, A., Moya, J., Corominas, J., Schrott, L., Dikau, R., 1999. Classic and new dating methods for assessing the temporal occurrence of mass movements. Geomorphology, 30: 33-52.
  • 14. Lopez-Saez, J., Corona, C., Stoffel, M., Schoeneich, P., Berger, F., 2012. Probability maps of landslide reactivation derived from tree-ring records: Pra Bellon landslide, southern French Alps. Geomorphology, 138: 189-202.
  • 15. Łuszczyńska, K., Wistuba, M., Malik, I., Krąpiec, M., Szypuła, B., 2018. Dendrochronological dating as the basis for developing a landslide hazard map - an example from the Western Carpathians, Poland. Geochronometria, 45: 173-184.
  • 16. Malik, I., Wistuba, M., 2012. Dendrochronological methods for reconstructing mass movements - an example of landslide activity analysis using tree-ring eccentricity. Geochronometria, 39: 180-196.
  • 17. Malik, I., Wistuba, M., Migoń, P., Fajer, M., 2016. Activity of slow-moving landslides recorded in eccentric tree rings of Norway spruce trees (Picea abies Karst.) an example from the Kamienne Mts (Sudetes Mts, Central Europe). Geochronometria, 43: 24-37.
  • 18. Metternicht, G., Hurni, L., Gogu, R., 2005. Remote sensing of landslides: an analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments. Remote Sensing of Environment, 98 : 284-303.
  • 19. Migoń, P., Pánek, T., Malik, I., Hradecký, J., Owczarek, P., Šilhán, K., 2010. Complex landslide terrain in the Kamienne Mountains, Middle Sudetes, SW Poland. Geomorphology, 124: 200-214.
  • 20. Migoń, P., Kacprzak, A., Malik, I., Kasprzak, M., Owczarek, P., Wistuba, M., Pánek, T. 2014. Geomorphological, pedological and dendrochronological signatures of a relict landslide terrain, Mt Garbatka (Kamienne Mts), SW Poland. Geomorphology, 219: 213-231.
  • 21. Petley, D.N., 2010. On the impact of climate change and population growth on the occurrence of fatal landslides in South, East and SE Asia. Quarterly Journal of Engineering Geology and Hydrogeology, 43: 487-496.
  • 22. Pillow, M.Y., Luxford, R.F., 1937. Structure, occurrence and properties of compression wood. USDA Technical Bulletin, 546.
  • 23. Prokop, A., Panholzer, H., 2009. Assessing the capability of terrestrial laser scanning for monitoring slow moving landslides. Natural Hazards and Earth System Sciences, 9: 1921-1928.
  • 24. Schuster, R.L., Fleming, R.W., 1986. Economic Losses and Fatalities Due to Landslides. Environmental and Engineering Geoscience, 23: 11-28.
  • 25. Schweingruber, F.H., 1996. Tree Rings and Environment. Dendroecology. Swiss Federal Institute for Forest, Snow and Landscape Research, WSL/FNP; Paul Haupt. Birmensdorf; Berne.
  • 26. Seneta, W., Dolatowski, J., 2008. Dendrologia (in Polish). PWN, Warszawa.
  • 27. Shroder, J.F., 1980. Dendrogeomorphology: review and new techniques of tree-ring dating. Progress in Physical Geography, 4: 161-188.
  • 28. Stupnicka, E., 2013. Geologia regionalna Polski (in Polish). Uniwersytet Warszawski.
  • 29. Šilhàn, K., 2016. How different are the results acquired from mathematical and subjective methods in dendrogeomorphology? In sights from landslide movements. Geomorphology, 253:189-198.
  • 30. Timell, T.E., 1986. Compression Wood in Gymnosperms. Springer-Verlag, Berlin, Heidelberg, New York.
  • 31. van Westen, C.J., Castellanos Abella, E.A., Sekha, L.K., 2008. Spatial data for landslide susceptibility, hazards and vulnerability assessment: an overview. Engineering Geology, 102: 112-131.
  • 32. Wiedenhoeft, A.C., 2013. Structure and function of wood. In: Handbook of wood Chemistry and Wood Composites. Second edition, Chapter 2 (ed. R.M. Rowell): 9-32. Taylor and Francis Group.
  • 33. Wistuba, M., Malik, I., Gärtner, H., Kojs, P., Owczarek, P., 2013. Application of ecceniric growth of trees as a tool for landslide analyses: the example of Picea abies Karst. in the Carpathian and Sudeten Mountains (Central Europe). Catena, 111: 41-55.
  • 34. Wistuba, M., Malik, I., Krzemień, K., Gorczyca, E., Sobucki, M., Wrońska-Wałach, D., Gawior, D., 2018. Can low-magnitude earthquakes act as a triggering factor for landslide activity? Examples from the Western Carpathian Mts, Poland. Catena, 171: 359-375.
  • 35. Yumoto, M., Ishida, S., Fukazawa, K., 1983. Studies on the formation and structure of the compression wood cells induced by artifactual initiation in young trees of Picea glauca. IV. Gradation of the severity of compression wood tracheids. Research Bulletins of the College Experiment Forests, 40: 409-454.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d793c30b-17cf-4a5b-a831-b17538078587
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.