PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A coupled model for sediment transport dynamics and prediction of seabed morphology with application to 1DH/2DH coastal engineering problems

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Coastline retreat poses a threat to nearshore environment and the assessment of erosion phenomena is required to plan the coastal engineering works. The hydro-morphodynamic response of a beach to natural and artificial forcing factors differ considerably, as the nearshore processes are especially complex and depended on a multitude of parameters, including prevailing wave and hydrodynamic conditions, beach topography, sediment characteristics and the presence of coastal protection works. The present study serves the purpose of numerically evaluating nearshore morphological processes and ultimately assessing the capacity of coastal defence structures to control beach erosion. For this reason, a new sediment transport model including unsteady effects and swash zone morphodynamics, was coupled to the highly nonlinear Boussinesq wave model FUNWAVE-TVD, providing integrated predictions of bed level evolution, across various timescales of interest. The compound model was validated thoroughly against laboratory data and other numerical investigations. Overall, a good agreement between experimental and numerical results was achieved for a number of test cases, investigating the effects of different types of shore protection structures. The proposed integrated model can be a valuable tool for engineers and scientists desiring to obtain accurate bed level predictions, over complex mildly and steeply sloping sea bottoms composed of non-cohesive sediment particles.
Czasopismo
Rocznik
Strony
514--534
Opis fizyczny
Bibliogr. 83 poz., rys., tab., wykr.
Twórcy
  • Laboratory of Harbour Works, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, Greece
  • Laboratory of Harbour Works, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, Greece
  • School of Naval Architecture and Marine Engineering, National Technical University of Athens, Athens, Greece
  • Laboratory of Harbour Works, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, Greece
Bibliografia
  • 1. Afentoulis, V., Eleftheria, K., Eleni, S., Evangelos, M., Archontia, L., Christos, M., Vasiliki, T., 2017. Coastal Processes Assessment Under Extreme Storm Events Using Numerical Modelling Approaches. Environ. Process. 4 (3), 731-747. https://doi.org/10.1007/s40710-017-0253-8
  • 2. Afentoulis, V., Chini, N., Bardey, P., Raffourt, C., 2019. Sea bed evolution in the vicinity of longitudinal submerged discontinuous breakwaters — Acripelagos. International Scientific Conference on Design and Management of Harbor, Coastal and Offshore Works Athens, Greece.
  • 3. Alsina, J.M., Cáceres, I., Brocchini, M., Baldock, T.E., 2012. An experimental study on sediment transport and bed evolution under different swash zone morphological conditions. Coast. Eng. 68, 31-43. https://doi.org/10.1016/j.coastaleng.2012.04.008
  • 4. Badiei, P., Kamphuis, J.W., Hamilton, D.G., 1995. Physical experiments on the effects of groins on shore morphology. In: Proceedings of the Coastal Engineering Conference. https://doi.org/10.1061/9780784400890.129
  • 5. Benoit, M., Marcos, F., Becq, F., 1997. Development of a third generation shallow-water wave model with unstructured spatial meshing. In: Proceedings of the Coastal Engineering Conference, 465-478. https://doi.org/10.1061/9780784402429.037
  • 6. Birben, A.R., Özölçer, I.H., Karasu, S., Kömürcü, M.I., 2007. Investigation of the effects of offshore breakwater parameters on sediment accumulation. Ocean Eng. 34 (2), 284-302. https://doi.org/10.1016/j.oceaneng.2005.12.006
  • 7. Bos, K.J., Roelvink, J.A., Dingemans, M.W., 1997. Modelling the impact of detached breakwaters on the coast. In: Proceedings of the Coastal Engineering Conference. https://doi.org/10.1061/9780784402429.157
  • 8. Bouvier, C., Castelle, B., Balouin, Y., 2019. Modeling the impact of the implementation of a submerged structure on surf zone sandbar dynamics. J. Mar. Sci. Eng. 117 (4). https://doi.org/10.3390/jmse7040117
  • 9. Bruun, P., 1954. Coast Erosion and the Development of Beach Profiles, US Army Corps of Engineers, 44. US Beach Erosion Board. Cáceres, I., Sánchez-Arcilla, A., Zanuttigh, B., Lamberti, A., Franco, L., 2005. Wave overtopping and induced currents at emergent low crested structures. Coast. Eng. 52 (10—11), 931-947. https://doi.org/10.1016/j.coastaleng.2005.09.004
  • 10. Cáceres, I., Stive, M.J.F., Sánchez-Arcilla, A., Trung, L.H., 2008. Quantification of changes in current intensities induced by wave overtopping around low-crested structures. Coast. Eng. 55 (2), 113-124. https://doi.org/10.1016/j.coastaleng.2007.09.003
  • 11. Charlier, R.H., de Meyer, C.P., 1989. Coastal defense and beach renovation. Ocean and Shoreline Management 12 (5—6), 525-543 https://doi.org/10.1016/0951-8312(89)90029-5
  • 12. Chen, Q., 2006. Fully Nonlinear Boussinesq-Type Equations for Waves and Currents over Porous Beds. J. Eng. Mech. 132 (2), 220-230. https://doi.org/10.1061/(asce)0733-9399(2006)132:2(220)
  • 13. Chen, Q., Dalrymple, R.A., Kirby, J.T., Kennedy, A.B., Haller, M.C., 1999. Boussinesq modeling of a rip current system. J. Geophys. Res. Oceans 104 (C9), 20617-20637. https://doi.org/10.1029/1999jc900154
  • 14. Chen, Q., Kirby, J.T., Dalrymple, R.A., Shi, F., Thornton, E.B., 2003. Boussinesq modeling of longshore currents. J. Geophys. Res. Oceans 108 (C11). https://doi.org/10.1029/2002jc001308
  • 15. Christou, M., Swan, C., Gudmestad, O.T., 2008. The interaction of surface water waves with submerged breakwaters. Coast. Eng. 55 (12), 945-958. https://doi.org/10.1016/j.coastaleng.2008.02.014
  • 16. Dean, R., G., 1977. Equilibrium beach profiles: US Atlantic and Gulf coasts. Department of Civil Engineering and College of Marine Studies., University of Delaware.
  • 17. Deltares Delft Hydraulics, 1997. Two-dimensional and one-dimensional model simulations for the effect of a single detached breakwater on the shore. Deltares (WL), Delft, Netherlands.
  • 18. Dette, H.H., Larson, M., Murphy, J., Newe, J., Peters, K., Reniers, A., Steetzel, H., 2002. Application of prototype flume tests for beach nourishment assessment. Coast. Eng. 47 (2), 137-177. https://doi.org/10.1016/S0378-3839(02)00124-2
  • 19. Divinsky, B.V., Kosyan, R.D., 2020. Influence of the climatic variations in the wind waves parameters on the alongshore sediment transport. Oceanologia 62 (2), 190-199. https://doi.org/10.1016/j.oceano.2019.11.002
  • 20. Divinsky, B.V., Ryabchuk, D.V., Kosyan, R.D., Sergeev, A.Y., 2021. Development of the sandy coast: Hydrodynamic and morphodynamic conditions (on the example of the Eastern Gulf of Finland). Oceanologia 63 (2), 214-226. https://doi.org/10.1016/j.oceano.2020.12.002
  • 21. Ding, Y., Wang, S.S.Y., 2008. Development and Application of a Coastal and Estuarine Morphological Process Modeling System. J. Coastal Res. 10052, 127-140. https://doi.org/10.2112/1551-5036-52.sp1.127
  • 22. Do, J.D., Jin, J.Y., Hyun, S.K., Jeong, W.M., Chang, Y.S., 2020. Numerical investigation of the effect of wave diffraction on beach erosion/accretion at the Gangneung Harbor. Korea. J. Hydro-Environ. Res. 29, 31-44. https://doi.org/10.1016/j.jher.2019.11.003
  • 23. Feddersen, F., Clark, D.B., Guza, R.T., 2011. Modeling surf zone tracer plumes: 1. Waves, mean currents, and low-frequency eddies. J. Geophys. Res. Oceans, 116(C11). https://doi.org/10.1029/2011JC007210
  • 24. French, P., 2001. Coastal Defences Processes, Problems and Solution. Taylor & Francis Group. https://doi.org/10.4324/9780203187630
  • 25. Galappatti, G., Vreugdenhil, C.B., 1985. A depth-integrated model for suspended sediment transport. J. Hydraulic Res. 23. https://doi.org/10.1080/00221688509499345
  • 26. Galappatti, R., 1983. A depth integrated model for suspended transport. Communications on Hydrology - Delft University of Technology, Department of Civil Engineering Report, 83-7.
  • 27. Gallerano, F., Cannata, G., Lasaponara, F., 2016. A new numerical model for simulations of wave transformation, breaking and long-shore currents in complex coastal regions. Int. J. Numer. Methods Fluids. 80 (10), 571-613. https://doi.org/10.1002/fld.4164
  • 28. Geiman, J.D., Kirby, J.T., Reniers, A.J.H.M., MacMahan, J.H., 2011. Effects of wave averaging on estimates of fluid mixing in the surf zone. J. Geophys. Res. Oceans 116 (C4). https://doi.org/10.1029/2010JC006678
  • 29. Gorrick, S., Rodríguez, J.F., 2014. Scaling of sediment dynamics in a laboratory model of a sand-bed stream. J. Hydro-Environ 8 (2), 77-87. https://doi.org/10.1016/j.jher.2013.12.001.
  • 30. Grasmeijer, B., 2002. Process-Based Cross-Shore Modeling of Barred Beaches Ph.D. Thesis. Utrecht University, Utrecht, The Netherlands.
  • 31. Hieu, P.D., Phan, V.N., Nguyen, V.T., Nguyen, T.V., Tanaka, H., 2020. Numerical study of nearshore hydrodynamics and morphology changes behind offshore breakwaters under actions of waves using a sediment transport model coupled with the SWASH model. Coast. Eng. J. 62 (4), 553-565. https://doi.org/10.1080/21664250.2020.1828016
  • 32. Holthuijsen, L.H., Herman, A., Booij, N., 2003. Phase-decoupled refraction-diffraction for spectral wave models. Coast. Eng. 49 (4), 291-305. https://doi.org/10.1016/S0378-3839(03)00065-6
  • 33. Isobe, M., Horikawa, K., 1982. Study on water particle velocities of shoaling and breaking waves. Coast. Eng. 25 (1), 109-123. https://doi.org/10.1080/05785634.1982.11924340
  • 34. Johnson, D., Pattiaratchi, C., 2006. Boussinesq modelling of transient rip currents. Coast. Eng. 53 (5—6), 419-439. https://doi.org/10.1016/j.coastaleng.2005.11.005
  • 35. Karambas, T.V., 2012. Design of detached breakwaters for coastal protection: development and application of an advanced numerical model. Coast. Eng. Proc. 1-6. https://doi.org/10.9753/icce.v33.sediment.115
  • 36. Karambas, T.V., Koutitas, C., 2002. Surf and Swash Zone Morphology Evolution Induced by Nonlinear Waves. J. Waterw. Port Coast. Ocean Eng. 128 (3), 102-113. https://doi.org/10.1061/(asce)0733-950x(2002)128:3(102)
  • 37. Karambas, T.V., Samaras, A.G., 2017. An integrated numerical model for the design of coastal protection structures. J. Mar. Sci. Eng. 5 (4), 50. https://doi.org/10.3390/jmse5040050
  • 38. Katopodi, I., Ribberink, J.S., 1992. Quasi-3D modelling of suspended sediment transport by currents and waves. Coast. Eng. 18 (1—2), 83-110. https://doi.org/10.1016/0378-3839(92)90006-G
  • 39. Kennedy, A.B., Kirby, J.T., Chen, Q., Dalrymple, R.A., 2001. Boussinesq-type equations with improved nonlinear performance. Wave Motion 33 (3), 225-243. https://doi.org/10.1016/S0165-125(00)00071-8
  • 40. Klonaris, G.T., Memos, C.D., Drønen, N.K., 2016. High-Order Boussinesq-Type Model for Integrated Nearshore Dynamics. J. Waterw. Port Coast. Ocean Eng. 142 (6), 04016010. https://doi.org/10.1061/(asce)ww.1943-5460.0000349
  • 41. Klonaris, G.T., 2016. Morphodynamics in a beach with submerged breakwaters. NTUA Athens, Greece.
  • 42. Klonaris, G.T., Memos, C.D., Drønen, N.K., Deigaard, R., 2018. Simulating 2DH coastal morphodynamics with a Boussinesq-type model. Coast. Eng. J. 60 (2), 159-179. https://doi.org/10.1080/21664250.2018.1462300
  • 43. Klonaris, G.T., Metallinos, A.S., Memos, C.D., Galani, K.A., 2020. Experimental and numerical investigation of bed morphology in the lee of porous submerged breakwaters. Coast. Eng. 155, 103591. https://doi.org/10.1016/j.coastaleng.2019.103591
  • 44. Kobayashi, H., Watanabe, A., Isobe, M., Sato, S., Ishii, T., 2000. Three-dimensional beach deformation model for nonlinear multi-directional waves. In: 2000 — Proceedings of the 27th International Conference on Coastal Engineering. ICCE 2000 https://doi.org/10.1061/40549(276)213
  • 45. Kobayashi, N., 2016. Coastal Sediment Transport Modeling for Engineering Applications. J. Waterw. Port Coast. Ocean Eng. 142 (6), 03116001. https://doi.org/10.1061/(asce)ww.1943-5460.0000347
  • 46. Kristensen, S.E., Drønen, N., Deigaard, R., Fredsoe, J., 2016. Impact of groyne fields on the littoral drift: A hybrid morphological modelling study. Coast. Eng. 111, 13-22. https://doi.org/10.1016/j.coastaleng.2016.01.009
  • 47. Larsen, J., Dancy, H., 1983. Open boundaries in short wave simulations - A new approach. Coast. Eng. 7 (3), 285-297. https://doi.org/10.1016/0378-3839(83)90022-4
  • 48. Larson, M., Kubota, S., Erikson, L., 2004. Swash-zone sediment transport and foreshore evolution: Field experiments and mathematical modeling. Mar. Geol. 212 (1—4), 61-79. https://doi.org/10.1016/j.margeo.2004.08.004
  • 49. Larson, M., Wamsley, T.V., 2007. A formula for longshore sediment transport in the Swash. In: Coastal Sediments ’07 — Proceedings of 6th International Symposium on Coastal Engeneering and Science of Coastal Sediment Processes. https://doi.org/10.1061/40926(239)151
  • 50. Leont’yev, I.O., 1996. Numerical modelling of beach erosion during storm event. Coast. Eng. 29 (1—2), 187-200. https://doi.org/10.1016/S0378-3839(96)00029-4
  • 51. Lesser, G.R., Roelvink, J.A., van Kester, J.A.T.M., Stelling, G.S., 2004. Development and validation of a three-dimensional morphological model. Coast. Eng. 51 (8—9), 883-915. https://doi.org/10.1016/j.coastaleng.2004.07.014
  • 52. Malej, M., Shi, F., Smith, J. M., 2019. Modeling ship-wake-induced sediment transport and morphological change—sediment module in FUNWAVE-TVD. Technical Note (Engineer Research and
  • Development Center (U.S.)). https://doi.org/10.21079/11681/32911
  • 53. Madsen, P.A., Sørensen, O.R., Schäffer, H.A., 1997. Surf zone dynamics simulated by a Boussinesq type model. Part I. Model description and cross-shore motion of regular waves. Coast. Eng. 32 (4), 255287. https://doi.org/10.1016/S0378-3839(97)00028-8
  • 54. Mahmoudof, S.M., Hajivalie, F., 2021. Experimental study of hydraulic response of smooth submerged breakwaters to irregular waves. Oceanologia 63 (4), 448-462. https://doi.org/10.1016/j.oceano.2021.05.002
  • 55. Masselink, G., Russell, P., Turner, I., Blenkinsopp, C., 2009. Net sediment transport and morphological change in the swash zone of a high-energy sandy beach from swash event to tidal cycle time scales. Mar. Geol. 267 (1—2), 18-35. https://doi.org/10.1016/j.margeo.2009.09.003
  • 56. Ming, D., Chiew, Y.-M., 2000. Shoreline Changes behind Detached Breakwater. J. Waterw. Port Coast. Ocean Eng. 126 (2), 63-70. https://doi.org/10.1061/(asce)0733-950x(2000)126:2(63)
  • 57. Nwogu, O., Takayama, T., Ikeda, N., 1992. Living with shore protection structures: A review. Report of Port and Harbour Research Institute 31 (2), 3-19.
  • 58. Nam, P.T., Larson, M., Hanson, H., 2011. A numerical model of beach morphological evolution due to waves and currents in the vicinity of coastal structures. Coast. Eng. 58 (9), 863-876. https://doi.org/10.1016/j.coastaleng.2011.05.006
  • 59. Nam, P.T., Larson, M., Hanson, H., Hoan, L.X., 2009. A numerical model of nearshore waves, currents, and sediment transport. Coast. Eng. 56 (11—12), 1084-1096. https://doi.org/10.1016/j.coastaleng.2009.06.007
  • 60. Nordstrom, K.F., 2014. Living with shore protection structures: A review. Estuar. Coast. Shelf Sci. 50, 11-23. https://doi.org/10.1016/j.ecss.2013.11.003
  • 61. Postacchini, M., Russo, A., Carniel, S., Brocchini, M., 2016. Assessing the Hydro-Morphodynamic Response of a Beach Protected by Detached, Impermeable, Submerged Breakwaters: A Numerical Approach. J. Coastal Res. 32 (3), 590-602. https://doi.org/10.2112/JCOASTRES-D-15-00057.1
  • 62. Pranzini, E., Wetzel, L., Williams, A.T., 2015. Aspects of coastal erosion and protection in Europe. J. Coast. Conserv. 19. https://doi.org/10.1007/s11852-015-0399-3
  • 63. Ranasinghe, R., Larson, M., Savioli, J., 2010. Shoreline response
  • 64. to a single shore-parallel submerged breakwater. Coast. Eng.57 (11—12), 1006-1017. https://doi.org/10.1016/j.coastaleng.2010.06.002
  • 65. Razak, M.S.A., Nor, N.A.Z.M., 2018. XBeach Process-Based Modelling of Coastal Morphological Features Near Breakwater. MATEC Web of Conferences. https://doi.org/10.1051/matecconf/201820301007
  • 66. Ribberink, J.S., 1998. Bed-load transport for steady flows and unsteady oscillatory flows. Coast. Eng. 34 (1—2), 59-82. https://doi.org/10.1016/S0378-3839(98)00013-1
  • 67. Roelvink, D., Costas, S., 2019. Coupling nearshore and aeolian processes: XBeach and duna process-based models. Environ. Model Softw. 115, 98-112. https://doi.org/10.1016/j.envsoft.2019.02.010
  • 68. Ruiz-Martínez, G., Mariño-Tapia, I., Baldwin, E.G.M., Casarín, R.S., Ortiz, C.E.E., 2016. Identifying Coastal Defence Schemes through Morphodynamic Numerical Simulations along the Northern Coast of Yucatan. Mexico. J. Coastal Res. 32 (3), 651-669. https://doi.org/10.2112/JCOASTRES-D-15-00009.1
  • 69. Seabergh, W.C., Kraus, N.C., 2003. Progress in management of sediment bypassing at coastal inlets: Natural bypassing, weir jetties, jetty spurs, and engineering aids in design. Coast. Eng. J. 45 (04), 533-563. https://doi.org/10.1142/S0578563403000944
  • 70. Servold, K.P., Webb, B.M., Douglass, S.L., 2017. Effects of Low-Crested Living Shoreline Breakwaters on Wave Setup, in: Coastal Structures and Solutions to Coastal Disasters 2015: Resilient Coastal Communities - Proceedings of the Coastal Structures and Solutions to Coastal Disasters Joint Conference 2015. https://doi.org/10.1061/9780784480304.045
  • 71. Shi, F., Kirby, J.T., Harris, J.C., Geiman, J.D., Grilli, S.T., 2012. A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Model. 43, 36-51. https://doi.org/10.1016/j.ocemod.2011.12.004
  • 72. V. Afentoulis, A. Papadimitriou, K. Belibassakis et al. Smagorinsky, J., 1963. General circulation experiments wiht the primitive equations I. The basic experiment. Mon. Weather Rev. 91.
  • 73. Smit, P.B., Janssen, T.T., Herbers, T.H.C., 2015. Stochastic modeling of inhomogeneous ocean waves. Ocean Model. 96, 26-35. https://doi.org/10.1016/j.ocemod.2015.06.009
  • 74. Tang, J., Lyu, Y., Shen, Y., Zhang, M., Su, M., 2017. Numerical study on influences of breakwater layout on coastal waves, waveinduced currents, sediment transport and beach morphological evolution. Ocean Eng. 141, 375-387. https://doi.org/10.1016/j.oceaneng.2017.06.042
  • 75. Tonelli, M., Petti, M., 2009. Hybrid finite volume - finite difference scheme for 2DH improved Boussinesq equations. Coast. Eng. 56 (5—6), 609-620. https://doi.org/10.1016/j.coastaleng.2009.01.001
  • 76. Tsiaras, A.-C., Karambas, T., Koutsouvela, D., 2020. Design of Detached Emerged and Submerged Breakwaters for Coastal Protection: Development and Application of an Advanced Numerical Model. J. Waterw. Port Coast. Ocean Eng. 146 (4), 04020012. https://doi.org/10.1061/(asce)ww.1943-5460.0000566
  • 77. Valsamidis, A., Reeve, D.E., 2017. Modelling shoreline evolution in the vicinity of a groyne and a river. Cont. Shelf Res. 132, 49-57. https://doi.org/10.1016/j.csr.2016.11.010
  • 78. van Rijn, L., 1993. In: Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas, 1006. Aqua publications, Amsterdam, 11-13.
  • 79. van Rijn, L.C., 2011. Coastal erosion and control. Ocean and Coastal Manag. 54 (12), 867-887. https://doi.org/10.1016/j.ocecoaman.2011.05.004
  • 80. van Rijn, L., C., 2013. Design of hard coastal structures against erosion. Accessed online: https://www.leovanrijn-sediment.com/papers/Coastalstructures2013.pdf.
  • 81. Watanabe, A., 1988. In: Horikawa, K. (Ed.), University of Tokyo Press, Tokyo.
  • 82. Wei, G., Kirby, J.T., Sinha, A., 1999. Generation of waves in Boussinesq models using a source function method. Coast. Eng. 36 (4), 271-299. https://doi.org/10.1016/S0378-3839(99)00009-5
  • 83. Zyserman, J.A., Johnson, H.K., 2002. Modelling morphological processes in the vicinity of shore-parallel breakwaters. Coast. Eng. 45 (3—4), 261-284. https://doi.org/10.1016/S0378-3839(02)00037-6
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d78fde94-ef62-4e1c-8615-3a22d7e7eea7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.