PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Novel Correlation for Predicting the Density of Tetrazole–N-oxide Salts as Green Energetic Materials through Their Molecular Structure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, a new and reliable model is derived for predicting the density of tetrazole N-oxide salts using molecular structure descriptors through multiple linear regression methods (MLR). The proposed model is based on the elemental, functional group and type of molecule descriptors. The coefficient of determination (R2) of the model was 0.9321 for 36 energetic tetrazole N-oxides with different molecular structures as an exploratoryset. The predictive ability of this model has been checked using a cross validation method (Q2 LOO = 0.9325 and Q2 LMO = 0.9324). The new correlation had a root mean square deviation (RMSD) of 0.033 g·cm−3 and an average absolute deviation (AAD) of 0.025 g·cm−3. This correlation also gave good predicted results for a further 10 energetic tetrazole N-oxides as a test set. The new reliable model can also be appliedfor designing novel energetic tetrazole N-oxides.
Rocznik
Strony
629--651
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
autor
  • Faculty of Chemistry and Chemical Engineering, Malek-ashtar University of Technology, P.O. Box 15875-1774, Tehran, Islamic Republic of Iran
  • Faculty of Chemistry and Chemical Engineering, Malek-ashtar University of Technology, P.O. Box 15875-1774, Tehran, Islamic Republic of Iran
Bibliografia
  • [1] Zhao, Z.; Du, Z.; Han, Z.; Zhang, Y.; He, C.Nitrogen-rich Energetic Salts: Both Cations and Anions Contain Tetrazole Rings. J. Energ. Mater. 2014, 34: 183-196.
  • [2] Lin, Q. H.; Li, Y. C.; Qi, C.; Liu, W.; Wanga, Y.; Pang, S. P. Nitrogen-rich salts based on 5-hydrazino-1H-tetrazole: a New Family of High-density Energetic Materials. J. Mater. Chem. A. 2013, 1: 6776-6785.
  • [3] Joo, Y. H.; Shreeve, J. M. High‐density Energetic Mono‐ or Bis(oxy)‐5‐nitroiminotetrazoles. Angew. Chem. Int. Ed. 2010, 49: 7320-7323.
  • [4] Klapötke, T. M.; Stierstorfer, J. The New Energetic Compounds 1,5‐Diaminotetrazolium and 5‐Amino‐1‐methyltetrazolium Dinitramide – Synthesis, Characterization and Testing. Eur. J. Inorg. Chem. 2008, 4055–4062.
  • [5] Hiskey, M. A.; Goldman, N.; Stine, J. R. High-nitrogen Energetic Materials Derived from Azotetrazolate. J. Energ. Mater. 1998, 16:119-127.
  • [6] Singh, R. P.; Verma, R. D.; Meshri, D. T.; Shreeve, J. M. Energetic Nitrogen‐rich and Ionic Liquids. Angew. Chem. Int. Ed. 2006, 45: 3584-3601.
  • [7] Klapötke, T. M.; Mayer, P.; MiróSabaté, C.; Welch, J. M.; Wiegand, N. Simple, Nitrogen-rich, Energetic Salts of 5-Nitrotetrazole.Inorg. Chem.2008, 47(13): 6014-6027.
  • [8] Hiskey, M. A.; Goldman, N.; Stine, J. R. High-nitrogen Energetic Materials Derived from Azotetrazolate. J. Energ. Mater. 1998, 16: 119-127.
  • [9] Xue, H.; Arritt, S. W.; Twamley, B.; Shreeve, J. M. Energetic Salts from N-Aminoazoles. Inorg. Chem. 2004, 43(25):7972-7977.
  • [10] Zhang, X.; Zhu, W.; Wei, T.; Zhang, C.; Xiao, H.; Densities, Heats of Formation, Energetic Properties, and Thermodynamics of Formation of Energetic Nitrogenrich Salts Containing Substituted Protonated and Methylated Tetrazole Cations: A Computational Study. J. Phys. Chem. C. 2010, 114(30):13142-13152.
  • [11] Gao, H.; Shreeve, J. M.Azole-based Energetic Salts. Chem. Rev. 2011, 111(11): 7377-7436.
  • [12] Xue, H.; Gao, H.; Twamley, H.; Shreeve, J. M. Energetic Salts of 3-Nitro-1,2,4-triazole-5-one, 5-Nitroaminotetrazole, and Other Nitro-substituted Azoles. Chem. Mater. 2007, 19(7): 1731-1739.
  • [13] Drake, G. W.; Hawkins T. M.; Boatz, J.; Hall, L.; Vij, A. Experimental and Theoretical Study of 1,5‐Diamino‐4‐H‐1,2,3,4‐tetrazolium Perchlorate. Propellants. Explos. Pyrotech. 2005, 30:156-163.
  • [14] Kaplan, G.; Drake, G.; Tollison, K.; Hall, L.; Hawkins, T. Synthesis, Characterization, and Structural Investigations of 1‐Amino‐3‐substituted‐1,2,3‐triazolium Salts, and a New Route to 1‐Substituted‐1,2,3‐triazoles. J. Heterocycl. Chem. 2005, 42:19-27.
  • [15] Gao, Y.; Arritt. S. W.; Twamley, B.; Shreeve, J. M. Guanidinium-based Ionic Liquids. Inorg. Chem. 2005, 44(6):1704-1712.
  • [16] Gao, Y.; Ye, C. F.; Twamley, B.; Shreeve, J. M. Energetic Bicyclic Azolium Salts. Chem. Eur. J. 2006, 12: 9010-9018.
  • [17] Gao, H.; Wang, R.; Twamley, B.; Hiskey, M. A.; Shreeve, J. M. 3-Amino-6-nitroamino-tetrazine (ANAT)-based Energetic Salts. Chem. Commun. 2006, 4007-4009.
  • [18] Fraenk, W.; Habereder, T.; Hammer, A.; Klapötke, T. M.; Krumm, B.; Mayer, P.; Nöth, H.; Warchhold, M. Highly Energetic Tetraazidoborate Anion and Boron Triazide Adducts. Inorg. Chem. 2001, 40(6): 1334-1340.
  • [19] Gilardi, R.; Anderson, J. F.; George, C.; Butcher, R. J. A New Class of Flexible Energetic Salts: the Crystal Structures of the Ammonium, Lithium, Potassium, and Cesium Salts of Dinitramide. J. Am. Chem. Soc. 1997, 119(40): 9411-9416.
  • [20] Klapötke, T. M.; Mayer, P.; Schulz, A.; Weigand, J. J. 1,5-Diamino-4-methyltetrazolium Dinitramide. J. Am. Chem. Soc. 2005, 127(7): 2032-2033.
  • [21] Joo, Y. H.; Twamley, B.; Shreeve, J. M. Carbonyl and Oxalyl Bridged Bis(1,5‐diaminotetrazole)‐based Energetic Salts. Chem. Eur. J. 2009, 15: 9097-9104.
  • [22] Klapötke, T. M.; Stierstorfer. J. In: Green Energetic Materials. (Brinck, T., Ed) John Wiley & Sons Ltd, New Jersey, 2014, chapter 6, ISBN; 978-1-119-94129-3.
  • [23] Kamlet, M. J.; Jacobs, S. J. Chemistry of Detonations. I. A Simple Method for Calculating Detonation Properties of C–H–N–O Explosives. J. Chem. Phys. 1986, 48: 23-25.
  • [24] Zeman, S.; Jungo, M. Sensitivity and Performance of Energetic Materials. Propellants Explos. Pyrotech. 2016, 41: 426-451.
  • [25] Qiu, L.; Xiao, H.; Gong, X.; Ju, X.; Zhu, W.; Crystal Density Predictions for Nitramines Based on Quantum Chemistry. J. Hazard. Mater. 2007, 141: 280- 288.
  • [26] Ammon, H. L. Updated Atom/Functional Group and Atom_Code Volume Additivity Parameters for the Calculation of Crystal Densities of Single Molecules, Organic Salts, and Multi-Fragment Materials Containing H, C, B, N, O, F, S, P, Cl, Br, and I. Propellants Explos. Pyrotech. 2008, 33: 92-102.
  • [27] Tarver, C. M. Density Estimations for Explosives and Related Compounds Using the Group Additivity Approach. J. Chem. Eng. Data. 1979, 24(2): 136-145.
  • [28] Ye, C.; Shreeve, J. M. New Atom/Group Volume Additivity Method to Compensate for the Impact of Strong Hydrogen Bonding on Densities of Energetic Materials. J. Chem. Eng. Data. 2008, 53(2): 520-524.
  • [29] Lin, H.; Zhu, S. G.; Chen, P. Y.; Li, K.; Li, H. Z.; Peng, X. H. DFT Investigation of a High Energy Density Polynitro Compound, 2,2’-Bis(trinitromethyl)-5,5’- azo-1,2,3,4- tetrazole. Cent. Eur. J. Energ. Mater. 2013, 10(3): 325-338.
  • [30] Politzer, P.; Martinez, J.; Murray, J.S.; Concha, M. C. An Electrostatic Correction for Improved Crystal Density Predictions of Energetic Ionic Compounds. Molecular Physics 2010, 108: 1391-1396.
  • [31] Rice, B.M.; Hare, J.J.; Byrd, E. F. C. Accurate Predictions of Crystal Densities Using Quantum Mechanical Molecular Volumes. J. Phys. Chem. A 2007, 111: 10874-10879.
  • [32] Ghasemi, J.; Saaidpour, S.; Brown, S. D. QSPR Study for Estimation of Acidity Constants of Some Aromatic Acid Derivatives Using Multiple Linear Regression (MLR) Analysis. J. Mol. Struc: THEOCHEM 2007, 805:27-32.
  • [33] Gramatica, P. Principles of QSAR Models Validation: Internal and External. QSAR. Comb. Sci. 2007, 26: 694-701.
  • [34] Tropsha, A. Best Practices for QSAR Model Development, Validation, and Exploitation. Mol. Inform. 2010, 29: 476-488.
  • [35] Zohari, N.; Sheibani, N. Link between Density and Molecular Structures of Energetic Azido Compounds as Green Plasticizers. Z. Anorg. Allg. Chem. 2016, 642: 1472-1479.
  • [36] Keshavarz, M. H.; Pouretedal, H. R. A Reliable Simple Method to Estimate Density of Nitroaliphatics, Nitrate Esters and Nitramines. J. Hazard. Mater. 2009, 169: 158-169.
  • [37] Keshavarz, M. H. Novel Method for Predicting Densities of Polynitro Arene and Polynitro Heteroarene Explosives in Order to Evaluate their Detonation Performance. J. Hazard. Mater. 2009, 165: 579-588.
  • [38] Keshavarz, M. H. New Method for Calculating Densities of Nitroaromatic Explosive Compounds. J. Hazard. Mater. 2007, 145: 263-269.
  • [39] Keshavarz, M. H.; Motamedoshariati, H.; Moghayadnia, R.; Ghanbarzadeh, M.; Azarniamehraban, J. A New Computer Code for Assessment of Energetic Materials with Crystal Density, Condensed Phase Enthalpy of Formation, and Activation Energy of Thermolysis. Propellants. Explos. Pyrotech. 2013, 38: 95-102.
  • [40] Keshavarz, M. H.; Pouretedal, H. R.; Saberi, E. A Simple Method for Prediction of Density of Ionic Liquids through their Molecular Structure. J. Mol. Liq. 2016, 216: 732-737.
  • [41] Keshavarz, M. H. Prediction of Densities of Acyclic and Cyclic Nitramines, Nitrate Esters and Nitroaliphatic Compounds for Evaluation of their Detonation Performance. J. Hazard. Mater. 2007, 143: 437-442.
  • [42] Keshavarz, M. H.; Klapotke, T. M.; Suceska, M. Energetic Materials Designing Bench (EMDB), Version 1.0. Propellants. Explos. Pyrotech. 2017, 42: 854-856.
  • [43] Rahimi, R.; Keshavarz, M. H.; Akbarzadeh, A. R. Prediction of the Density of Energetic Materials on the Basis of their Molecular Structures. Cent. Eur. J. Energ. Mater.2016, 13(1): 73-101.
  • [44] Keshavarz, M. H.; Soury, H.; Motamedoshariati, H.; Dashtizadeh, A. Improved Method for Prediction of Density of Energetic Compounds Using their Molecular Structure. Struct. Chem. 2015, 26: 455-466.
  • [45] Keshavarz, M. H.; Rahimi, R.; Akbarzadeh, A. R. Two Novel Correlations for Assessment of Crystal Density of Hazardous Ionic Molecular Energetic Materials Using their Molecular Structures. Fluid. Phase. Equilibria. 2015, 402: 1-8.
  • [46] Keshavarz, M. H.; Klapotke, T. M. The Properties of Energetic Materials, Sensitivity, Physical and Thermodynamic Properties. 1st Ed., Walter de Gruyter GmbH, Berlin/ Boston, 2018; ISBN 978-3-11-052187-0.
  • [47] Zohari, N.; Abrishami, F.; Ebrahimikia, M.Investigation of the Effect of Various Substituents on the Density of Tetrazolium Nitrate Salts as Green Energetic Materials. Z. Anorg. Allg. Chem. 2016, 642: 749-760.
  • [48] Zohari, N.; Abrishami, F.; Zeinali, V.Using the QSPR Approach for Estimating the Density of Azole‐based Energetic Compounds. Z. Anorg. Allg.Chem. 2017, 643: 2124-2137.
  • [49] He, P.; Zhang, J. G.; Yin, X.; Wu, J. T.; Wu, L.; Zhou, N. Z.; Zhang, T. L. Energetic Salts Based on Tetrazole N‐oxide. Chem. Eur. J. 2016, 22: 7670-7685.
  • [50] Palm, W. J. Introduction to MATLAB for Engineers. 3rd Ed., McGraw-Hil, New York, 2011; ISBN 978-0-07-353487-9.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d78e3271-9108-4cfa-8c86-5b8759a963f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.