PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Open porosity of cement pastes and their gas permeability

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of extensive research work on the open porosity and gas permeability of cement pastes. Tests were conducted on cement pastes with different water/cement ratios and types of cement. The three most popular cements in Poland from the CEM I, CEM II and CEM III groups were tested after the pastes had been cured for 90 days in laboratory conditions. The scope of experiments included the assessment of open porosity determined using three different methods: comparing the bulk and specific densities, mercury intrusion porosimetry and saturating the material with water. In addition, this article contains an analysis of the porosity characteristics based on the distributions produced by porosimetry examinations. Gas permeability was determined using the modified RILEM-Cembureau laboratory method. The results of the completed test allowed a quantitative determination to be made of the impact of water-cement ratio and type of cement used on open porosity assessed by various methods, and the influence of these parameters on the gas permeability of the paste. The quantitative changes in the content of capillary pores and meso-pores in the cement pastes analysed are also presented.
Rocznik
Strony
775--783
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Building Materials and Structures, Cracow University of Technology, 24 Warszawska St., 31-155 Kraków, Poland
Bibliografia
  • [1] R.A. Cook and K.C. Hover, “Mercury porosimetry of hardened cement pastes”, Cem. Concr. Res. 29, 933–943 (1999).
  • [2] S. Diamond, “Mercury porosimetry. An inappropriate method for the measurement of pore size distributions in cement-based materials”, Cem. Concr. Res. 30, 1517–1525 (2000).
  • [3] C. Gallé, “Effect of drying on cement-based materials pore structure as identified by mercury intrusion porosimetry”, Cem. Concr. Res. 31, 1467–1477 (2001).
  • [4] G. Hedenblad, “The use of mercury intrusion porosimetry or helium porosity to predict the moisture transport properties of hardened cement paste”, Adv. Cem. Based Mater. 6, 123–129 (1997).
  • [5] M. Krus, K.K. Hansen, and H.M. Künzel, “Porosity and liquid absorption of cement paste”, Mater. Struct. 30, 394–398 (1997).
  • [6] B.K. Nyame and J.M. Illston, “Capillary pore structure and permeability of hardened cement paste”, in 7th Int. Congr. Chem. Cem. Vol. 3, p. VI-181‒185, (1980).
  • [7] D. Winslow and D. Liu, “The pore structure of paste in concrete”, Cem. Concr. Res. 20, 227–235 (1990).
  • [8] L. Czarnecki and P. Woyciechowski, “Modelling of concrete carbonation ; is it a process unlimited in time and restricted in space?”, Bull. Pol. Ac.: Tech. 63, (2015).
  • [9] C.L. Zhang and T. Rothfuchs, “Damage and sealing of clay rocks detected by measurements of gas permeability”, Phys. Chem. Earth 33, (2008).
  • [10] J.C. Stormont, “Conduct and interpretation of gas permeability measurements in rock salt”, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 34, 648 (1997).
  • [11] S. Takeuchi, S. Nakashima, and A. Tomiya, “Permeability measurements of natural and experimental volcanic materials with a simple permeameter: Toward an understanding of magmatic degassing processes”, J. Volcanol. Geotherm. Res. 177, 329–339 (2008).
  • [12] A.M. Neville, “Properties of concrete”, Pearson Education Limited, London, (2011).
  • [13] J. Baron and J.P. Ollivier, “Durablité des bétons”, Collect. l’Association Tech. l’Industrie Des Liants Hydraul. Press I’ENPC (1992).
  • [14] W. Kurdowski, “Cement and concrete chemistry”, Springer Netherlands (2014).
  • [15] T. Tracz and J. Śliwiński, “Effect of cement paste content and w/c ratio on concrete water absorption”, Cem. Lime Concr. 3, 131‒137 (2012).
  • [16] V. Picandet, D. Rangeard, A. Perrot and T. Lecompte, “Permeability measurement of fresh cement paste”, Cem. Concr. Res. 41, 330–338 (2011).
  • [17] A. Pierre, A. Perrot, V. Picandet and Y. Guevel, “Cellulose ethers and cement paste permeability”, Cem. Concr. Res. 72, 117–127 (2015).
  • [18] J.J. Kollek, “The determination of the permeability of concrete to oxygen by the Cembureau method—a recommendation”, Mater. Struct. 22, 225–230 (1989).
  • [19] RILEM Technical Recommendation, “Permeability of concrete as a criterion of its durability”, Mater. Struct. 32, 174–179 (1999).
  • [20] CEN, “EN 197‒1 Composition, specification and conformity criteria for common cements”, Brussels (2012).
  • [21] CEN, “EN 196‒1, Methods of testing cement – Part 1: Determination of strength”, Brussels (2006).
  • [22] Micrometrics Instrument Corporation, “GeoPyc 1360 operator’s manual”, (2001).
  • [23] Quantachrome Instruments, “Ultrapycnometer 1000 operator’s manual”, (2007).
  • [24] J. Śliwiński and T. Tracz, “Sorptivity of normal and high performance concrete”, Cem. Wapno, Bet. 1, 27‒33 (2007).
  • [25] T. Tracz and J. Śliwiński, “Influence of type of cement on porosity and permeability of high performance concrete”, in Proc. 7th CANMET/ACI Int. Conf. Durab. Concr., Montreal, Canada (2006).
  • [26] T. Zdeb, “Ultra-high performance concrete – properties and technology”, Bull. Pol. Ac.: Tech. 61, 183–193 (2013).
  • [27] I. Hager, “Behaviour of cement concrete at high temperature”, Bull. Pol. Ac.: Tech. 61, 1–10 (2013).
  • [28] X. Chen, L. Xu, and S. Wu, “Influence of pore structure on mechanical behavior of concrete under high strain rates”, J. Mater. Civ. Eng. 28, 04015110 (2016).
  • [29] T. Tracz and J. Śliwiński, “Influence of cement type and water-cement ratio on open porosity and gas permeability of cement pastesle”, in UKIERI Concr. Congr. Innov. Concr. Constr., Jalandhar, India, 461–470 (2013).
  • [30] X Chen, S. Wu and J. Zhou, “Experimental study and analytical model for pore structure of hydrated cement paste”, Appl. Clay Sci. 101, 159–167 (2014).
  • [31] H.N. Atahan, O.N. Oktar and M.A. Tasdemir, “Effects of water-cement ratio and curing time on the critical pore width of hardened cement paste”, Constr. Build. Mater. 23, 1196–1200 (2009).
  • [32] X Chen, S. Wu and J. Zhou, “Experimental study and analytical model for pore structure of hydrated cement paste”, Appl. Clay Sci. 101, 159–167 (2014).
  • [33] X. Chen and S. Wu, “Influence of water-to-cement ratio and curing period on pore structure of cement mortar”, Constr. Build. Mater. 38, 804–812 (2013).
  • [34] Q. Zeng, K. Li, T. Fen-Chong and P. Dangla, “Pore structure characterization of cement pastes blended with high-volume fly-ash”, Cem. Concr. Res. 42, 194–204 (2012).
  • [35] S. Care and F. Derkx, “Determination of relevant parameters influencing gas permeability of mortars”, Constr. Build. Mater. 25, 1248–1256 (2011).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d78dfe7c-2eda-4233-95c8-0049a8271814
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.