PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancing photovoltaic solar model parameter optimization: WSO-MTBO hybrid approach based on Newton-Raphson method

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ulepszanie optymalizacji parametrów modelu fotowoltaicznego: hybrydowe podejście WSO-MTBO oparte na metodzie Newtona-Raphsona
Języki publikacji
EN
Abstrakty
EN
In recent years, accurate parameter estimation in photovoltaic (PV) system modeling has become increasingly crucial for optimizing overall system performance. The main contribution is to combine War Strategy Optimization (WSO) and Mountaineering Team-Based Optimization (MTBO) algorithms based on the Newton-Raphson technique, a novel hybrid model, WSO-MTBO, allows to estimate parameters in solar cell models. Finally, simulation results are presented and compared with other algorithms, that illustrate enhanced parameter estimation accuracy
PL
W ostatnich latach dokładne szacowanie parametrów w modelowaniu systemów fotowoltaicznych (PV) stało się coraz ważniejsze dla optymalizacji ogólnej wydajności systemu. Głównym wkładem jest połączenie algorytmów War Strategy Optimization (WSO) i Mountaineering Team-Based Optimization (MTBO) opartych na technice Newtona-Raphsona, nowy hybrydowy model WSO-MTBO pozwala na szacowanie parametrów w modelach ogniw słonecznych. Na koniec przedstawiono wyniki symulacji i porównano je z innymi algorytmami, które ilustrują zwiększoną dokładność szacowania parametrów.
Rocznik
Strony
133--140
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
  • University of Tunis, Higher National Engineering School of Tunis (ENSIT), Laboratory of Industrial Systems Engineering and Renewable Energy (LISIER), 05 Ave Taha Hussein, Tunis 1008
  • University of Tunis, Higher National Engineering School of Tunis (ENSIT), Laboratory of Industrial Systems Engineering and Renewable Energy (LISIER), 05 Ave Taha Hussein, Tunis 1008
  • Center for Energy Research and Technologies (CRTEn)
  • University of Tunis, Higher National Engineering School of Tunis (ENSIT), Laboratory of Industrial Systems Engineering and Renewable Energy (LISIER), 05 Ave Taha Hussein, Tunis 1008
Bibliografia
  • [1] Ayyarao, Tummala SLV and Kumar, Polamarasetty P. Parameter estimation of solar PV models with a new proposed warstrategy optimization algorithm, IEEE International Journal ofEnergy Research, p.7215-7238, 2022.
  • [2] Oliva, Diego and Cuevas, Erik and Pajares, Gonzalo. Parameter identification of solar cells using artificial bee colony optimization, IEEE International Journal of Energy Research, p.93-102, 2014.
  • [3] Askarzadeh, Alireza and Rezazadeh. Parameter identificationfor solar cell models using harmony search-based algorithms,Solar Energy, p. 3241-3249, 2012.
  • [4] Abdel-Basset, Mohamed and El-Shahat. Parameter estimation of photovoltaic models using an improved marine predators algorithm, Energy Conversion and Management, vol 227,p. 113491, 2021.
  • [5] WANG, Dongqing et DING, Feng. Parameter estimation algorithms for multivariable Hammerstein CARMA systems, Information Sciences,p.237-248, 2016.
  • [6] OLIVA, Diego, CUEVAS, Erik, et PAJARES, Gonzalo Parameter identification of solar cells using artificial bee colony optimization, Energy, vol 72, p. 93-102, 2014.
  • [7] LIN, Peijie, CHENG, Shuying, YEH, Weichang, et al. Parameters extraction of solar cell models using a modified simplifiedswarm optimization algorithm, Solar Energy, p.594-603,2017
  • [8] YOUSRI, Dalia, THANIKANTI, Sudhakar Babu, ALLAM, Dalia,et al. Fractional chaotic ensemble particle swarm optimizerfor identifying the single, double, and three diode photovoltaicmodels parameters, Energy,vol 195, p. 116979, 2020.
  • [9] CHEN, Shanshan, FARKOUSH, Saeid Gholami, et LETO, Sebastian. Photovoltaic cells parameters extraction using variables reduction and improved shark optimization technique,International Journal of Hydrogen Energy ,vol 45,p. 10059-10069 - 2020.
  • [10] ABDEL-BASSET, Mohamed, MOHAMED, Reda, ELFERGANY, Attia, et al. Efficient ranking-based whaleoptimizer for parameter extraction of three-diode photovoltaicmodel: Analysis and validations, Energies,vol 14, p.3729,2021.
  • [11] Xiong, Guojiang and Zhang, Jing and Shi, Dongyuan and He,Yu. Parameter extraction of solar photovoltaic models usingan improved whale optimization algorithm, Energy conversionand management, p. 388-405, 2018.
  • [12] CHEN, Shanshan, FARKOUSH, Saeid Gholami, et LETO, Sebastian. Photovoltaic cells parameters extraction using vari ables reduction and improved shark optimization technique, International Journal of Hydrogen Energyvol 45, p. 10059-10069, 2020.
  • [13] Premkumar, Manoharan and Jangir, Pradeep and Kumar.Constraint estimation in three-diode solar photovoltaic modelusing Gaussian and Cauchy mutation-based hunger gamessearch optimizer and enhanced Newton–Raphson method,IET Renewable Power Generation,vol 16 , p. 1733-1772 ,2022.
  • [14] Babu, T Sudhakar and Ram, J Prasanth and Sangeetha, Kand Laudani. Parameter extraction of two diode solar PVmodel using Fireworks algorithm, Solar energy vol 140, p.265-276, 2016.
  • [15] YOUSRI, Dalia, THANIKANTI, Sudhakar Babu, ALLAM, Dalia,et al. Fractional chaotic ensemble particle swarm optimizerfor identifying the single, double, and three diode photovoltaicmodels’ parameters, Energy, vol 195, pp .116979, 2020.
  • [16] Ibrahim, Ibrahim Anwar and Hossain, MJ and Duck, BenjaminC and Fell, Christopher. An adaptive wind-driven optimizationalgorithm for extracting the parameters of a single-diode PVcell model, IEEE Transactions on Sustainable Energy, vol 11,pp.1054-1066, 2019.
  • [17] Oliva, Diego and Abd El Aziz, Mohamed and Hassanien,Aboul Ella Parameter estimation of photovoltaic cells using animproved chaotic whale optimization algorithm, Applied energy, p. 141-154, 2017.
  • [18] GONZÁLEZ, Juan R., SANCHO-ROYO, Alejandro, PELTA,David A., et al. Nature-Inspired Cooperative Strategiesfor Optimization, Encyclopedia of Networked and VirtualOrganizations,p.982-989, 2008.
  • [19] Yang, Xin-She and Hossein Gandomi, Amir. Bat algorithm: anovel approach for global engineering optimization, Engineering computations,vol 29 , p. 464-483, 2012.
  • [20] Mirjalili, Seyedali and Lewis, Andrew The whale optimizationalgorithm Advances in engineering software, vol 95,p. 51-67,2016.
  • [21] Xiong, Guojiang and Zhang, Jing and Shi, Dongyuan and He,Yu. Parameter extraction of solar photovoltaic models usingan improved whale optimization algorithm, Energy conversionand management, p.388-405, 2018.
  • [22] Chen, Xu and Yu, Kunjie and Du, Wenli and Zhao, Wenxiangand Liu, Guohai Parameters identification of solar cell modelsusing generalized oppositional teaching learning based optimization Energy, vol 99 ,p.170-180, 2016.
  • [23] Xiong, Guojiang and Zhang, Jing and Shi Parameter extraction of solar photovoltaic models with an either-or teachinglearning based algorithm, Energy conversion and management,vol 224, p.113395, 2020.
  • [24] Abdel-Basset M, El-Shahat D, El-Henawy I, Sangaiah AK,Ahmed SH A novel whale optimization algorithm for crypt analysis in Merkle-Hellman Cryptosystem, Mobile Networksand Applications, Springer,vol 23, p.723-733, 2018.
  • [25] Abdel-Basset, Mohamed and El-Shahat, Doaa and El-HenawyA novel whale optimization algorithm for cryptanalysis inMerkle-Hellman cryptosystem International Journal of EnergyResearch, pp.7215-7238, 2022.
  • [26] Ye, Xiaojia and Liu, Wei and Li, Hong and Wang, Mingjing andChi. Modified whale optimization algorithm for solar cell andPV module parameter identification, Complexity,vol, 2021 p.1-23, 2021.
  • [27] Xiong, Guojiang and Zhang, Jing and Shi, Dongyuan andZhu. Winner-leading competitive swarm optimizer with dynamic Gaussian mutation for parameter extraction of solarphotovoltaic models, Energy conversion and management,vol206, p.112450, 2020.
  • [28] Chin, Vun Jack and Salam, Zainal. Coyote optimization algorithm for the parameter extraction of photovoltaic cells, SolarEnergy, p.656-670, 2022.
  • [29] Zhang, Hongliang and Heidari, Ali Asghar and Wang, Mingjingand Zhang Orthogonal Nelder-Mead moth flame method forparameters identification of photovoltaic modules, EnergyConversion and Management, p.112764, 2020.
  • [30] Li, Shuijia and Gong, Wenyin and Yan, Xuesong and Hu,Chengyu and Bai Parameter extraction of photovoltaic models using an improved teaching-learning-based optimization,Energy Conversion and Management, p.293-305, 2019.
  • [31] Allam, Dalia and Yousri, DA and Eteiba, MB. Parameters extraction of the three diode model for the multi-crystalline solar cell/module using Moth-Flame Optimization Algorithm, International Journal of Energy Research, vol 123 , p.535-548,2016.
  • [32] Niu, Qun and Zhang, Hongyun and Li, Kang. An improvedTLBO with elite strategy for parameters identification of PEMfuel cell and solar cell models, International Journal of EnergyResearch, vol 39, p.3837-3854, 2014.
  • [33] Abd Elaziz, Mohamed and Oliva, Diego. Parameter estimationof solar cells diode models by an improved opposition-basedwhale optimization algorithm, Energy conversion and management, vol 171, p.1843-1859, 2018.
  • [34] Oliva, Diego and Ewees, Ahmed A and Abd El Aziz. A chaoticimproved artificial bee colony for parameter estimation of photovoltaic cells, Energies,vol 10, p.7215-7238, 2017.
  • [35] Qais, Mohammed H and Hasanien, Hany M and Alghuwainem, Saad Parameters extraction of three-diode photovoltaic model using computation and Harris Hawks optimization Energy,vol 195, p.117040, 2020.
  • [36] Jervase, Joseph A and Bourdoucen, Hadj and Al-Lawati, Ali.Solar cell parameter extraction using genetic algorithms, Measurement science and technology,vol 12, p.7215-7238, 2001.
  • [37] Kullampalayam Murugaiyan, Nandhini and Chandrasekaran.Leveraging opposition-based learning for solar photovoltaicmodel parameter estimation with exponential distribution optimization algorithm, International Journal of Energy Researchvol 14 , p.528, 2024.
  • [38] Hali, Aissa and Khlifi, Yamina Fast and efficient way of PVparameters estimation based on combined analytical and numerical approaches, Applied Solar Energy,vol 59, pp.135-151, 2023.
  • [39] ELHAMMOUDY, Abdelfattah, ELYAQOUTI, Mustapha,HMAMOU, Dris Ben, et al. Dandelion Optimizer algorithm-based method for accurate photovoltaic model parameteridentification, Energy Conversion and Management,vol 19,p.100405, 2023.
  • [40] Yuan, Shufu and Ji, Yuzhang and Chen, Yongxu and Liu, Xinand Zhang, Weijun. An Improved Differential Evolution for Parameter Identification of Photovoltaic Models, Sustainability,pp.13916, 2023.
  • [41] Yu, Xiaobing and Hu, Zhengpeng and Wang, Xuming and Luo,Wenguan. Ranking teaching–learning-based optimization algorithm to estimate the parameters of solar models, Engineering Applications of Artificial Intelligence ,vol 123, p.106225,2023.
  • [42] Saranya, J and Divya, V A Feature Extraction of PhotovoltaicSolar Panel monitoring system based on Internet of Things(IoT), EAI Endorsed Transactions on Internet of Things,vol 10, 2024.
  • [43] El Marghichi, Mouncef, and Soufiane Dangoury. Electrical parameters identification for three diode photovoltaic based onthe manta ray foraging optimization with dynamic fitness distance balance, Optik, p.171548, 2024.
  • [44] Kumari, P Ashwini and Basha, CH Hussaian and Puppala,Rajendhar and Fathima, Fini and Dhanamjayulu Application of DSO algorithm for estimating the parameters of triplediode model-based solar PV system, Scientific Reports,vol14, p.3867, 2024.
  • [45] Hüseyin Bakır Comparative performance analysis of metaheuristic search algorithms in parameter extraction for varioussolar cell models Environmental Challenges,vol 11, p.100720, 2023.
  • [46] JERIDI, Ahmed, et al. Optimizing Photovoltaic Solar Model Parameters Preprint Article,Researchsquare,doi.org/10.21203/rs.3.rs-3976792/vol 1, 2024.
  • [47] Tidjani, N., Ounnas, D., and Guessoum, A. Teaching-learningbased optimization approach for solar cell model parameteridentification. Przeglad Elektrotechniczny, 99(1), 33-37, 2023
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7860f12-8245-4f08-96e0-dcb39092f02d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.