
An Efficient Controller Placement
Algorithm using Clustering in Software

Defined Networks
Joshua Jacob, Sumedha Shinde, and Narayan D.G.

KLE Technological University, Hubballi, Karnataka, India

https://doi.org/10.26636/jtit.2023.4.1371

Abstract Software defined networking (SDN) is an emerging
network paradigm that separates the control plane from da-
ta plane and ensures programmable network management. In
SDN, the control plane is responsible for decision-making, while
packet forwarding is handled by the data plane based on flow en-
tries defined by the control plane. The placement of controllers
is an important research issue that significantly impacts the per-
formance of SDN. In this work, we utilize clustering techniques
to group networks into multiple clusters and propose an algo-
rithm for optimal controller placement within each cluster. The
evaluation involves the use of the Mininet emulator with POX as
the SDN controller. By employing the silhouette score, we deter-
mine the optimal number of controllers for various topologies.
Additionally, to enhance network performance, we employ the
meeting point algorithm to calculate the best location for plac-
ing the controller within each cluster. The proposed approach
is compared with existing works in terms of throughput, delay,
and jitter using six topologies from the Internet Zoo dataset.

Keywords clustering, controller placement, PAM, K-means++,
silhouette score, SDN

1. Introduction

Software defined networking (SDN) is an emerging concept
that differs from traditional networking by separating the con-
trol plane from the data plane [1]. In SDN, the control plane
comprises specialized controllers that act as an intelligent
core, while the data plane consists of simplified switches re-
sponsible for packet forwarding. This decoupling enables
the network to be programmable directly, offering numer-
ous advantages, such as streamlined network management,
improved network efficiency, and support for future network
advancements. Additionally, SDN introduces an application
layer which interacts with the data plane through the con-
trol plane using northbound APIs. This integration allows for
network control and the provision of network services. The
versatility and benefits of SDN have led to its widespread
adoption in various domains, including large data centers,
cloud computing environments, Internet of Things (IoT) ap-
plications, and wireless mesh networks.
OpenFlow serves as a communication interface that repre-
sents SDN. Initially, Open-Flow operated on the assumption
of a single controller for simplicity. However, as networks ex-
pand, this approach can encounter scalability and performance

challenges. To overcome these issues, several multi-controller
approaches have been proposed. One significant challenge that
arises when using multiple controllers is known as the con-
troller placement problem [2]. This problem revolves around
determining the optimal placement of controllers within an
SDN-enabled network and allocating the associated switches
to achieve specific objectives. These objectives may include
reducing latency, enhancing reliability, or improving ener-
gy efficiency. The aim of controller placement solutions is
to identify optimal methods for connecting controllers and
their corresponding switches in an SDN-enabled network.
The literature offers various clustering algorithms that ad-
dress the controller placement problem (CPP).
Recently, many clustering-based algorithms have been in-
troduced to address the issue of CPP. The objective of these
approaches is to determine the ideal number of clusters and
identify suitable locations within each cluster for placing
controllers. In the present study, we leverage clustering algo-
rithms to group networks into multiple clusters and present
an algorithm aimed at achieving optimal controller placement
within each cluster. The contributions of this work are listed
below:
– replication of a standard Internet Zoo topology on Mininet,
– segregation of the topology into clusters, based on cluster-

ing algorithms,

ControllerController

Control plane

OpenFlow
switch

OpenFlow
switch

OpenFlow
switch

OpenFlow
switch

OpenFlow
switch

Data plane

Fig. 1. Controller placement problem.

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 4/2023 This work is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 9

https://doi.org/10.26636/jtit.2023.4.1371
https://creativecommons.org/licenses/by/4.0/

Joshua Jacob, Sumedha Shinde, and Narayan D.G.

– use of the silhouette score to determine the optimal number
of controllers needed for the topology,

– computation of the controller’s optimal placement by rely-
ing on a meeting point algorithm to improve throughput,
delay, and jitter.

The structure of the paper is as follows. A literature survey and
a summary of related works are presented in Section 2. The
proposed technique and the algorithms applied to come up
with the answer are described in Section 3. The experimental
design, as well as the findings and analysis, are covered in
Section 4. Section 5 discusses the findings and the work that
will be done in the future.

2. Background Study

In this section, we discuss the controller placement problem
encountered in SDNs and then the related research performed
in that specific field.

2.1. Controller Placement Problem in SDN

SDN offers a centralized perspective of a network by segre-
gating the control plane from the data plane. This approach
of preserving resource management is optimized by having
a general network view. However, implementation of an SDN
with a single physical controller causes problems with re-
liability and scalability. Both can be solved by a physically
decentralized but semantically centralized SDN controller,
with the design thereof shown in Fig. 1. Along with its ad-
vantages, distributed SDN also suffers from a difficulty in
determining the quantity and in positioning the controllers
needed in the network. This issue is known as the controller
placement problem (CPP).
The performance of the network can be greatly influenced by
the configuration of the controllers, as they are responsible
for generating forwarding rules and implementing them on
the switches. In order to increase network performance and
ensure high availability of the network, several controllers
are necessary. The quantity of controllers that must be de-
ployed and their locations are two different components of
the CPP challenge. When determining the required number
of units, there is a trade-off between performance and deploy-
ment costs. By deploying numerous controllers, the network
becomes robust to controller failures while simultaneously
reducing latency. The device pool and the mapping between
a switch and a controller are fixed in the CPP solutions. Fur-
thermore, an effective switch migration strategy should take
switch migration cost into account as well.

2.2. Related Work

In [1], an in-depth analysis of the SDN controller placement
issue is presented. Generally, delay, dependability, and en-
ergy are the three primary categories that are dealt with in
the literature. Since the control path serves as the conduit for
the management and control SDN messages, dependability
of SDNs is directly impacted by dependability of the control

path. The initial expenses of building the network and sub-
sequent costs of its operation and maintenance make up the
majority of the SDN’s price tag.
Paper [2] reviews several SDN-optimized controller place-
ment algorithms. The static controller placement strategy is
a topology-based method that is only applicable in a single
topology and does not consider limits on the capacity of the
controllers, rendering it inapplicable in actual networks. The
dynamic controller placement method is a topology-based
method that is not constrained to any topology and disregards
limits on the controllers’ capacity.
Density-based spatial clustering (DBSCAN) and density peak
(DP), which are clustering techniques based on density in
unsupervised learning, are introduced by the authors of [3].
They can locate noise samples in a potential data set and may
cluster data of any shape. An improved DBSCAN and DP
algorithm-based two-stage clustering method was adopted.
According to the experiments, TSCM has the potential to ef-
fectively override both the manual selection of cluster centers
in DP and the parameter settings in DBSCAN, in the con-
text of DP and DBSCAN. The clustering performance is thus
greatly improved.
Authors of [4] introduce a machine learning (ML) methodolo-
gy to manage network traffic, focusing on forecasting the
probable count of controllers to be situated within the net-
work. This predictive mechanism is centralized in nature and
is implemented as a virtual network function (VNF) with-
in the network function virtualization (NFV) framework.
Controller count prediction is based on the utilization of an-
ticipated traffic patterns. Subsequently, the calculated number
of controllers is positioned optimally within the network us-
ing the K-medoid algorithm.
In [5], a two-phase technique that links utility-based game
theoretic solutions with stable matching, with the goal of re-
ducing controller response time and control traffic overhead,
is proposed. When compared to static assignment, the sug-
gested technique can, on average, cut response times by 86%
and traffic overhead by 2%. The algorithms used here are
coalitional game phase procedure and stable matching phase
procedure. The criteria considered in this case are the con-
troller’s worst response time and the control traffic overhead
generated by switch and controller communications.
CPP is assessed in article [6] using three meta-heuristics and
one clustering technique, with four different network scales.
The network’s entire traffic is predictable and static. Each con-
troller uses the flow setup time as the load. Network topology
is divided using the GSO algorithm. GSOCCPP demonstrates
its ability to arrange the controllers so that minimal end-to-
end delays and shorter run times are obtained. Additionally,
GSOCCPP performs well in large network topologies in terms
of memory consumption and calculation time.
The authors of [7] use the K-means++ algorithm as a traffic
engineering (TE) mechanism. TE is an important network
application. It is an iterative process of analyzing and classi-
fying the traffic and predicting future traffic to avoid network
congestion. Initially, controller position is identified using
the K-means++ initialization policy. Then, the controller is

10
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 4/2023

An Efficient Controller Placement Algorithm using Clustering in Software Defined Networks

placed at optimal locations and the traffic is captured. The
captured traffic is classified as low, high and normal. Then,
a greedy approach is used to distribute the traffic to different
controllers. The number of controllers is given as input for
the placement algorithm in order to achieve optimal place-
ments.
Controller placement-related issues are discussed in paper [8],
where they are divided into three categories. These are: de-
sign and implementation, development and application, as
well as investigation and evaluation. Pareto borders are used
to guide automated decision making. The benefits of inte-
grating the SDN control plane with network management
systems within the controller will be shown. The load balance
between controller instances and communication delays has
been optimized, allowing for dynamic traffic patterns to be
taken into consideration. Finally, four strategies are demon-
strated for weighting and rating individual solutions.
Article [9] discusses the method used to solve the issue of
placing SDN controllers by figuring out how many SDN con-
trollers should be placed, and when, in a wide area network,
along with describing any performance and financial con-
sequences. The authors apply the PAM algorithm to cluster
the network and utilize the Johnson algorithm to identify the
most optimal positions for the placement of controllers.
The authors of paper [10] propose a method for accommodat-
ing the increasing number of devices, necessitating network
management strategies to be deployed. The open-source na-
ture and programmability of network devices are facilitated
by SDN and network function virtualization providing isolat-
ing the control plane and the data plane from the network. The
authors argue that SDN attempts to create a programmable
network. SDN employs a traffic engineering mechanism to
determine the optimal number of controllers to be deployed in
the network. To prevent network congestion, traffic engineer-
ing is an iterative process that reads the state of the network,
analyses and categorizes the traffic, and forecasts network
traffic.
In [11], the researchers present a method for multiple con-
troller placement (MCP) that addresses both the determination
of the minimum number of required controllers and their op-
timal placement within the network. Traditional solutions
of CPP typically involve objective functions which consider
various factors and constraints, such as propagation latency
between switches, controllers, and inter-controllers, as well
as the capacity of controllers and switches. As far as we are
aware, this is the first time a modern review of CPP has been
attempted. Paper [11] categorizes the notion of CPP, evaluates
the solutions that are available, identifies their shortcomings
and potential future applications. With this knowledge, future
researchers will be better able to come up with new, creative
CPP solutions.
In order to reduce the average propagation latency between
switches and controllers, article [12] proposes a solution
based on the modified density peaks clustering algorithm. A
controller oversees each of the numerous subnetworks that
make up the total network. To assess the effectiveness of their
strategy, the authors perform their tests using the Internet 2

OS3E topology. Their controller placement approach can
drastically minimize latency, according to the test results. In
particular, average latency can be decreased by 10% when
compared to the results obtained with the use of the optimized
K-means approach and by 35% when compared to K-means.
In [13], to overcome the controller placement problem, a hie-
rarchical K-means algorithm is introduced along with a tech-
nique to divide the expansive network into several SDN do-
mains using a single controller. Trials relying on the Internet
2 OS3E topology are conducted to gauge the effectiveness
of such an approach. According to experimental findings,
the partition technique is more balanced than the optimized
K-means algorithm.
By employing a complex network analysis theory, the topol-
ogy of a network with the intended controller placement is
conceptualized in [14] as a network consisting of multiple
communities. Subsequently, a suitable location for each con-
troller is identified within each community, thereby circum-
venting the need for a complex global deployment approach.
To maintain a balanced distribution of controlled switches
across communities, the Louvain heuristic algorithm incorpo-
rates a scale constraint factor. This factor limits the number of
nodes within each community, ensuring a more equitable dis-
tribution of nodes among different communities. This method
autonomously identifies partitions with community charac-
teristics based solely on network topology.
In [15], a framework to enhance the reliability and scalability
of SDN is presented. A heuristic multi-level capacitated CPP
approach is used to efficiently assign switches to compati-
ble controllers. This method aims to optimize the number of
controllers, minimize delays, and evenly distribute the work-
load among the controllers. The allocation components are
then integrated with a genetic algorithm (GA) to further im-
prove the placement of controllers. The effectiveness of the
GA-based MCCPP is evaluated and compared to that of the
heuristic-based CCPP using various network topologies. The
adaptive GA-based approach demonstrates convergence and
achieves significantly reduced latency results.
Paper [16] introduced a method for efficient approximation
near-optimal placements using cross entropy. The proposed
approach was tested on five real topologies of the Internet
topology Zoo dataset. The results indicated that the approach
consistently achieved minimal propagation latency across
different network sizes and varying numbers of controllers.
Simulation results showed that the cross-entropy method con-
sistently produced optimal or near-optimal solutions in terms
of placing controllers in networks of different scales and when
dealing with different controller numbers, with a margin of
less than 1% from the optimal solution and up to 157 times
faster than the brute force method.
In [17], the authors proposed two approaches, namely
a priority-based switch placement method and an incremental
controller placement approach for hybrid SDNs. Simulation
results indicated that the introduced scheme significantly en-
hanced programmable traffic. A comparison with existing
solutions revealed that, when the number of time slots was 2,
the proposed approach exhibited a 12.30% and 13.14% in-

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 4/2023 11

Joshua Jacob, Sumedha Shinde, and Narayan D.G.

crease in programmable traffic as compared to map-first and
greedy approaches, respectively.
The multi-objective control plane dimensioning problem for
hybrid SDN networks is researched in article [18]. The pa-
rameters considered are network resilience, flow latency and
load balancing. The researchers have proposed optimization
models for both single and multi-objective controller place-
ments. These models incorporate the processing latency of
controllers, utilizing the queuing theory, and the synchroniza-
tion latency of inter-controller network state, utilizing Steiner
trees as a basis.
In paper [19], a novel swarm intelligence algorithm called
the naked mol-rat algorithm is presented to tackle the opti-
mization problem of controller placement. The algorithm’s
performance is compared with that of existing approaches.
This study specifically focuses on presenting the NMR algo-
rithm as a solution for multi-controller placement in an SDN
environment and evaluating its performance in comparison to
the bat algorithm.

3. Proposed Methodology

In this section, we discuss the specific approach behind the
introduced model, which includes a description of the pro-
posed system model and the system modules. Additionally,
we discuss such methods as meeting point and K-means++
algorithms.

3.1. Proposed System Model

The underlying network is described as an undirected graph
made up of elements G(S,L), where S denotes the set of
SDN switches and L is the set of physical connections. The
network will have k controllers, and a set of controllers will
be deployed therein. A specific number of switches is con-
trolled by each controller. The system model is divided into
two modules as shown in Fig. 2.
The role of the network partition module is to determine the
number of network partitions by analyzing node properties
across different network environments. We extract the node
features of the topology, such as their coordinates, connec-
tions, and numerous other aspects, after the standard topology
has been chosen. Once the node attributes have been obtained,
we submit them to a clustering algorithm which divides the
networks into k segments and determines the optimum num-
ber of controllers k, needed for the specific topology. Addi-
tionally, we replicate the same network design using Miniedit,
a Python application that offers a GUI for maintaining and
building topologies.
The controller placement module’s duties include determining
the best places for the controllers to be placed and testing the
network’s functionality using predetermined criteria. Once
the network is configured in Miniedit, we can connect to
two hosts using Xterm and transmit traffic across an UDP
channel to evaluate the network’s performance. This is done
by using the distributed internet traffic generator (D-ITG)
command. In order to determine the best positions for the

controllers, we also use the suggested controller placement
method. To show the topology of our network visually, this is
duplicated in Miniedit. We used the D-ITG tool to analyze
the network’s performance after the topology was visual-
ized in Miniedit. Lastly, we selected the best methodology
for the specified topology after comparing the performance
of several methodologies.

3.2. Module Description

Two modules are used: for determining the ideal number of
controllers, selecting the best clustering algorithm, and deter-
mining the ideal placement of the controllers.
To find the best clustering algorithm, we have taken 6 topolo-
gies from the Internet Zoo dataset, i.e. Abilene, Sanren,
Grena, Spiralight, Oxford and Atmnet. We have taken 3 clus-
tering algorithms to test them on specific topologies and to
evaluate the performance of these algorithms based on the
silhouette score. Algorithm 1 illustrates the K-means++ steps
in the context of SDN network clustering.

Algorithm 1. K-means++ algorithm.
Input:
A = a1, a2, . . . , an (set of entities required

to be clustered in a SDN subdomain)
k (number of SDN clusters)
MaxIterations (total number of iterations)

Output:
CL = cl1, cl2, . . . , cln (set of centroids of

the clusters in a SDN subdomain)
n = n(a), a = 1, 2, . . . , n

(SDN cluster labels numbers for A)
Begin:
1: for ai ∈ CL do
2: ai ← aj ∈ CL (e.g. random selection)
3: end for
4: for ai ∈ CL do
5: l(ai)← minDist(ai, aj), j ∈ {1, . . . , k}
6: end for
7: change← false, iters← 0
8: Repeat
9: for ai ∈ CL do UpdateCluster(ai)
10: end for
11: for ai ∈ A do
12: l(ai)← minDist(ai, aj), j ∈ {1, . . . , k}
13: if minDistance ̸= l(ai) then
14: l(ai)← minDistance, change← true
15: end if
16: iters++
17: end for
Until change = true and iters ¬MaxIterations

Silhouette score. The silhouette coefficient, also re-
ferred to as the silhouette score, is a statistic used to gauge
the effectiveness of a clustering method. Its value ranges
from –1 to 1 and is given by:

Silhouette score =
C −D

max(C,D)
, (1)

12
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 4/2023

An Efficient Controller Placement Algorithm using Clustering in Software Defined Networks

Network partition module Controller placement module

Miniedit

Miniedit

Node
characteristics

Standard
topology

Clustering
algorithm

CP algortithm

Random controller
location placement

D-ITG

D-ITG

Performance analysis
of network

Selection of optimal
methodology

Compare performance
analysis of various methods

Configuring controller
to optimal location

Fig. 2. Proposed system model.

where C is the typical separation between each point in
a cluster and D is the mean separation between each cluster.
Measure “1” indicates groups that are distinct and separated
by a large distance, “0” shows that there is no statistically
significant difference between clusters or that they are not
differentiable. Value of “1” demonstrates that the clusters
were wrongly assigned.
Algorithm 2. Controller placement using the meeting point
algorithm.
Input:

Location pointsK = k1, k2, ..., kn of n switches at
given location ki on the grid containing |G| cells
in a SDN subdomain.

Output:
Optimal meeting point – a cell
on the gridMPA(Lat, Lon)

Begin
1:MPA← NULL
2:MinCost← +∞
3: for gi ∈ G do
4: TotalSum← 0
5: for kj ∈ K do
6: TotalSum← TotalSum+ dN (gi, kj)
7: end for
8: Cost← Totalsum
9: if Totalcost < MinCost then
10: MinCost← Cost
11: end if
12:MPA← gi
End
Once the topology is segregated into clusters, we need to
optimize the controller-to-switch-to-controller distance, such
that the performance of the network is enhanced. To identify
the most optimal coordinates for the controllers, we use
an algorithm called meeting point [20] (Algorithm 2). The
meeting point algorithm is a computational method used
to determine the optimal location for a group, based on
individual locations. It takes into account such factors as
distance and preferences to find a convenient and fair meeting
point for all the parties involved. The meeting point algorithm
in SDN is a routing strategy that determines the optimal
point where traffic from multiple sources can converge and
be efficiently processed.

spectral clustering

Number of clusters

S
il

ho
u

et
te

 s
co

re

PAM clustering
K-means++ clustering

2 4 6 8 10
0

0.2

0.4

0.6

Fig. 3. Silhouette score for Abilene topology.

4. Results and Discussions

This section compares various clustering algorithms based
on their silhouette score for a given topology. Furthermore,
we compare the averages of throughput, latency, and jitter of
the proposed solution with the outcomes generated with the
use of other approaches.

4.1. Clustering Results

For evaluating the clustering algorithms and finding the
optimal number of clusters, we use the silhouette coefficient
as the key performance metric.

Tab. 1. Silhouette score for various topologies forK = 2.

Topology No. of
nodes K-means++ Spectral PAM

Abilene 11 0.584 0.574 0.581
Sanren 7 0.376 0.297 0.293
Grena 10 0.523 0.697 0.684

Atmnet 21 0.656 0.431 0.530
Spiralight 15 0.534 0.624 0.293

Oxford 19 0.556 0.567 0.502

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 4/2023 13

Joshua Jacob, Sumedha Shinde, and Narayan D.G.

Tab. 2. Controller placement results using K-means++.

Topology
K-means++ and Johnson [9] K-means++ and meeting point

Avg. throughput Avg. delay Avg. jitter Avg. throughput Avg. delay Avg. jitter
Sanreen 6.52 0.51 0.43 6.74 0.33 0.27
Abilene 7.21 0.47 0.39 7.77 0.29 0.24
Atmnet 7.68 0.44 0.42 8.32 0.34 0.39

Tab. 3. Controller placement results using spectral clustering.

Topology
Spectral and Johnson Spectral and meeting point

Avg. throughput Avg. delay Avg. jitter Avg. throughput Avg. delay Avg. jitter
Grena 7.33 0.41 0.38 7.57 0.39 0.34

Spiralight 7.67 0.46 0.33 8.05 0.41 0.29
Oxford 7.26 0.48 0.40 7.61 0.43 0.35

To find the best clustering algorithm for a small scale-based
topology, we have taken 6 topologies from the Internet Zoo
dataset, i.e. Abilene, Sanren, Grena, Spiralight, Oxford, and

K-means++ and meeting point

Number of flows

PAM and Johnson
K-means++ and centroid

2 4 6 8 10
6

7

8

9

A
ve

ra
ge

 t
hr

ou
gh

pu
t

[p
ac

ke
ts

/s
]

Fig. 4. Average throughput.

K-means++ and meeting point

Number of flows

PAM and Johnson
K-means++ and centroid

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
g

e
d

el
ay

 [
m

s]

Fig. 5. Average delay.

Atmnet. We have taken 3 clustering algorithms to test them
on the topologies and to evaluate the performance of these
algorithms based on the silhouette score. Figure 3 shows
the silhouette score for the Abilene topology. The results
reveal that the number of optimal clusters is 2 and that K-
means++ performs better than spectral and PAM clustering
approaches, for this topology. Table 1 gives the silhouette
score for six topologies forK = 2. We can observe, from the
findings concerning the six aforementioned topologies, that
the K-means++ method has demonstrated to have a higher
silhouette score for small scale topologies. However, we find
that spectral clustering yields superior outcomes for dense
and medium-sized topologies, such as Grena, Spiralight, and
Oxford. This is because spectral clustering outperforms K-
means++ and PAM in dense topologies. Additionally, we
determine thatK = 2 is the right number of clusters based
on the silhouette score. So, using the K-means++ clustering
method, we divided the topology into two groups to work on
Sanren, Abilene, and Atmnet topologies. Further, by using the
spectral clustering method, we divided the topology into two
groups to work on Grena, Spiralight, and Oxford topologies.

K-means++ and meeting point

Number of flows

PAM and Johnson
K-means++ and centroid

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
g

e
ji

tt
er

 [
m

s]

Fig. 6. Average jiiter.

14
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 4/2023

An Efficient Controller Placement Algorithm using Clustering in Software Defined Networks

4.2. Controller Placement Results

After the topology has been divided into clusters, it is nec-
essary to optimize the controller-to-switch-to-controller dis-
tance in order to improve network performance. We employ
a method called the ideal meeting point algorithm to identi-
fy the most advantageous coordinate for the controllers. We
test this against the algorithm used in [9]. Any of the points
whose distance is lower than the distance at the centroid will
be the point with the shortest distance travelled.
The centroid can occasionally provide an incorrect position,
since we simply take the average of all points and round off
the value, regardless of the minimum distance covered by all
the points. Undoubtedly, this will result in a point that is in
the center of all the other points, which is typically the cor-
rect response. The centroid formula, however, would never
allow us to know if the nearest point is always one of the input
points. We double-check the neighbors of the ”losest point”
to resolve this issue.
We discuss the performance of the proposed controller place-
ment algorithms using the following QoS parameters.
Throughput is a measure of how many units of informa-
tion a system can process in a given amount of time. Using
the distributed internet traffic generator (D-ITG) command,
we connect to two hosts using Xterm and transfer the traf-
fic across a UDP channel in order to measure the average
throughput. We test the throughput for each flow as we incre-
mentally increase the number of hosts communicating, or the
number of flows.
Figure 4 shows the results concerning the Abilene topology.
From the figure it can be inferred that the average through-
put of (K-means++ and meeting point) is relatively higher
than the average throughput of (PAM and Johnson). This re-
sults from placing the controller at optimal locations. It is
observed that for flow number 2, the average throughput de-
creases in all three cases. The increased number of packet-in
messages to the controller can be attributed to the lack of
a matching probability between the preserved flow rules and
the newly arriving packets. It is further observed that for flow
number 8, the average throughput decreases in all three cases.
This is because after a certain time the switch reaches a hard
timeout and clears its flow table leading to an additional pro-
cessing delay. It can be inferred that for every 5 flows the
switch reaches a hard timeout and clears its flow table leading
to an additional processing delay for the Abilene topology
under consideration.
Average delay is the average time taken to process n pack-
ets. We employed the D-ITG approach to inject traffic into
the network and determine the average delay. By gradual-
ly incrementing the number of flows, we could evaluate the
network’s ability to maintain consistent performance under
increasing traffic. Figure 5 shows the results concerning the
Abilene topology. From the figure it can be inferred that av-
erage delay of (K-means++ and meeting point) is relatively
lower than the average delay of (PAM and Johnson). This re-
sults from placing the controller at reliable locations. It is
observed that at flow number 2, the average delay increases

in all three cases. The reason behind the increase in the num-
ber of the controller’s packet-in messages is the absence of
a matching probability between the preserved flow rules and
the incoming packets, leading to a lack of correspondence.
Average jitter refers to the mean irregular fluctuations in
latency experienced by a packet flow between two systems,
arising from varying delays encountered by individual pack-
ets during the transmission. To calculate the average delay, we
used the D-ITG to introduce traffic into the network and cal-
culated the average jitter. By gradually increasing the number
of flows, we could assess the network’s capability to sustain
consistent performance under an escalating traffic load.
From Fig. 6, it can be inferred that he average jitter of (K-
means++ and meeting point) is relatively lower than the aver-
age jitter of (PAM and Johnson). This is due to the selection
of optimal locations for the controller.
Across six unique network topologies, we evaluate the ef-
fectiveness of the proposed approach by analyzing average
throughput, average latency, and average jitter. This assess-
ment encompasses the performance of two distinct clustering
algorithms on specific topologies, as summarized in Tabs. 2
and 3. Upon analyzing the findings presented in Tab. 2, it is
apparent that the synergy between the K-means++ clustering
method and the meeting point algorithm has displayed bet-
ter performance when compared with the outcomes achieved
when using K-means++ in conjunction with the Johnson
algorithm. This notable enhancement in performance is con-
sistently observed across three diverse topologies.
It is important to highlight that the authors in [9] did not
utilize spectral clustering in combination with the Johnson
algorithm. In our study, we specifically assessed the perfor-
mance of spectral clustering when used in conjunction with
the Johnson algorithm. When analyzing Tab. 3, it becomes
evident that the utilization of spectral clustering alongside
the meeting point method has yielded significantly superior
results compared to both spectral clustering and the Johnson
algorithm, across three distinct topologies.
In summary, our research showcased that the combination of
the K-means clustering approach with the Johnson or Meeting
Point algorithm exhibits superior performance when deal-
ing with topologies featuring a lower number of nodes, as
evidenced in Tab. 2. Conversely, the fusion of spectral clus-
tering with the Johnson or meeting point algorithms proves
more effective for topologies comprising a larger number of
nodes, as demonstrated in Tab. 3. Moreover, our results un-
derscore the superiority of the meeting point algorithm over
the Johnson in terms of performance. This discrepancy can
be attributed to the following factors:
Efficiency: the meeting point algorithm has a faster run time
than the Johnson approach, meaning it can solve more com-
plex instances of the controller placement problem more
quickly. The meeting point algorithm is based on a greedy ap-
proach, meaning it can solve the controller placement problem
in polynomial time, typically O(n3), where n is the number
of switches in the network. This makes it more efficient than
the Johnson algorithm which has an exponential runtime of
O(2n).

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 4/2023 15

Joshua Jacob, Sumedha Shinde, and Narayan D.G.

Scalability: The meeting point algorithm exhibits superior
scalability in comparison with the Johnson approach. This
implies its ability to manage more extensive networks con-
taining a higher number of switches and controllers. The
meeting point algorithm operates in a distributed manner,
allowing convenient parallelization to accommodate larger
networks. On the other hand, the Johnson algorithm operates
centrally, demanding the calculation of all switch-to-switch
distances before placement. This characteristic makes it chal-
lenging to effectively scale for larger networks.
Accuracy: the meeting point algorithm provides a more ac-
curate solution than the Johnson approach, meaning it can
achieve better performance in terms of network objectives.
The meeting point algorithm takes into account the physical
distance between switches and controllers when assigning
switches to controllers. This consideration allows the meeting
point algorithm to assign switches to the nearest controller,
resulting in better network performance. On the other hand,
the Johnson algorithm does not consider the physical distance
between switches and controllers when assigning switches to
controllers. Instead, it assigns switches to controllers based
solely on their connectivity, which can lead to suboptimal
controller placements and poorer network performance.

5. Conclusion

SDN is a new paradigm for networks that separates the con-
trol plane from the data plane and offers flexible network
administration. Controller placement is an important issue in
a large-scale SDN. The main aim of the controller placement
process is to improve such performance metrics as average
latency, average delay, and average jitter. Furthermore, the
location of the controllers and effective switch-controller
mapping is important.
In this work, we initially tested different clustering algorithms
to identify the suitable clustering algorithm for the specific
type of topology. Silhouette score was used to test the per-
formance of the clustering algorithms. Next, we found the
optimal locations of the controllers using the closest meeting
point algorithm. The results obtained in the course of Mininet
simulations reveal that the performance level achieved with
the proposed controller placement algorithm is better than in
existing works. As future work, we plan to work on a dynamic
controller placement mechanism using such QoS parame-
ters as latency and reliability. We also intend to evaluate the
results in an OpenStack-based testbed environment.

References
[1] J. Lu et al., “A Survey of Controller Placement Problem in Software-

defined Networking”, IEEE Access, vol. 7, pp. 24290–24307, 2019
(https://doi.org/10.1109/ACCESS.2019.2893283).

[2] S.-K. Yoon, Z. Khalib, N. Yaakob, and A. Amir, “Controller Placement
Algorithms in Software Defined Network – A Review of Trends and
Challenges”, MATEC Web of Conferences, vol. 140, art. no. 01014,
2017 (https://doi.org/10.1051/matecconf/201714001014).

[3] M. Li, X. Bi, L. Wang, and X. Han, “A Method of Two-stage Clustering
Learning Based on Improved DBSCAN and Density Peak Algorithm”,
Computer Communications, vol. 167, pp. 75–84, 2021 (https:
//doi.org/10.1016/j.comcom.2020.12.019).

[4] G. Ramya and R. Manoharan, “Traffic-aware Dynamic Controller
Placement in SDN using NFV”, The Journal of Supercomputing, vol.
79, no. 4, pp. 2082–2107, 2023 (https://doi.org/10.1007/s1
1227-022-04717-8).

[5] M. Ider and B. Barekatain, “An Enhanced AHPTOPSIS-based Load
Balancing Algorithm for Switch Migration in Software-defined Net-
works”, The Journal of Supercomputing, vol. 77, pp. 563–596, 2021
(https://doi.org/10.1007/s11227-020-03285-z).

[6] S. Torkamani-Azar and M. Jahanshahi, “A New GSO Based Method
for SDN Controller Placement”, Computer Communications, vol.
163, pp. 91–108, 2020 (https://doi.org/10.1016/j.comcom.
2020.09.004).

[7] V. Huang, G. Chen, Q. Fu, and E. Wen, “Optimizing Controller Place-
ment for Software-Defined Networks,” in: IFIP/IEEE Symposium on
Integrated Network and Service Management (IM), Arlington, USA,
pp. 224–232, 2019 (https://arxiv.org/pdf/1902.09451).

[8] O. Flauzac, E.G. Robledo, C. Gonzalez, F. Mauhourat, and F. Nolot,
“SDN Architecture to Prevent Attacks with OpenFlow”, in: 8th In-
ternational Conference on Wireless Networks and Mobile Com-
munications (WINCOM), pp. 1–6, Reims, France, 2020 (https:
//doi.org/10.1109/WINCOM50532.2020.9272445).

[9] L. Mamushiane, J. Mwangama, and A.A. Lysko, “Controller Place-
ment Optimization for Software Defined Wide Area Networks (SD-
WAN)”, ITU Journal on Future and Evolving Technologies, vol. 2,
no. 1, pp. 45–66, 2021 (https://doi.org/10.52953/PUIU5171).

[10] G. Ramya and R. Manoharan, “Prediction Based Dynamic Controller
Placement in SDN”, EAI Endorsed Transactions on Scalable Infor-
mation Systems, vol. 8, no. 32, 2021 (https://doi.org/10.4108
/eai.27-4-2021.169420).

[11] A.K. Singh and S. Srivastava, “A Survey and Classification of Con-
troller Placement Problem in SDN”, International Journal of Network
Management, vol. 28, no. 3, 2018 (https://doi.org/10.1002/
nem.2018).

[12] Y. Qi et al., “Towards Multi-controller Placement for SDN Based on
Density Peaks Clustering”, in: ICC IEEE International Conference
on Communications, Shanghai, China, 2019 (https://doi.org/10
.1109/ICC.2019.8761814).

[13] H. Kuang, Y. Qiu, R. Li, and X. Liu, “A Hierarchical K-means Algo-
rithm for Controller Placement in SDN-based WAN Architecture”, in:
2018 10th International Conference on Measuring Technology and
Mechatronics Automation (ICMTMA), Changsha, China, pp. 263–267,
2018 (https://doi.org/10.1109/ICMTMA.2018.00070).

[14] W. Chen, C. Chen, X. Jiang, and L. Liu, “Multi-controller Place-
ment towards SDN Based on Louvain Heuristic Algorithm”, IEEE
Access, vol. 6, pp. 49486–49497, 2018 (https://doi.org/10.1
109/ACCESS.2018.2867931).

[15] A.A.Z. Ibrahim et al., “A Modified Genetic Algorithm for Controller
Placement Problem in SDN Distributed Network”, in: 2021 26th IEEE
Asia-Pacific Conference on Communications (APCC), Kuala Lumpur,
Malaysia, 2021 (https://doi.org/10.1109/APCC49754.2021
.9609838).

[16] J. Chen, H. Yin, C. Xiao, and D. He, “A Cross Entropy-Based Ap-
proach for Controller Placement Problem in Software Defined Net-
work”, in: 2021 International Conference on Information Technolo-
gy and Biomedical Engineering (ICITBE), Nanchang, China, 2021
(https://doi.org/10.1109/ICITBE54178.2021.00010).

[17] T. Das and M. Gurusamy, “Multi-objective Control Plane Dimen-
sioning in Hybrid SDN/Legacy Networks”, IEEE Transactions on
Network and Service Management, vol. 18, no. 3, pp. 2929–2942,
2021 (https://doi.org/10.1109/TNSM.2021.3066847).

[18] I. Maity, S. Misra, and C. Mandal, “SCOPE: Cost-Efficient QoS-Aware
Switch and Controller Placement in Hybrid SDN”, IEEE Systems
Journal, vol. 16, no. 3, pp. 4873–4880, 2022 (https://doi.org/
10.1109/JSYST.2021.3124280).

16
JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 4/2023

https://doi.org/10.1109/ACCESS.2019.2893283
https://doi.org/10.1051/matecconf/201714001014
https://doi.org/10.1016/j.comcom.2020.12.019
https://doi.org/10.1016/j.comcom.2020.12.019
https://doi.org/10.1007/s11227-022-04717-8
https://doi.org/10.1007/s11227-022-04717-8
https://doi.org/10.1007/s11227-020-03285-z
https://doi.org/10.1016/j.comcom.2020.09.004
https://doi.org/10.1016/j.comcom.2020.09.004
https://arxiv.org/pdf/1902.09451
https://doi.org/10.1109/WINCOM50532.2020.9272445
https://doi.org/10.1109/WINCOM50532.2020.9272445
https://doi.org/10.52953/PUIU5171
https://doi.org/10.4108/eai.27-4-2021.169420
https://doi.org/10.4108/eai.27-4-2021.169420
https://doi.org/10.1002/nem.2018
https://doi.org/10.1002/nem.2018
https://doi.org/10.1109/ICC.2019.8761814
https://doi.org/10.1109/ICC.2019.8761814
https://doi.org/ 10.1109/ICMTMA.2018.00070
https://doi.org/ 10.1109/ACCESS.2018.2867931
https://doi.org/ 10.1109/ACCESS.2018.2867931
https://doi.org/10.1109/APCC49754.2021.9609838
https://doi.org/10.1109/APCC49754.2021.9609838
https://doi.org/10.1109/ICITBE54178.2021.00010
https://doi.org/10.1109/TNSM.2021.3066847
https://doi.org/10.1109/JSYST.2021.3124280
https://doi.org/10.1109/JSYST.2021.3124280

An Efficient Controller Placement Algorithm using Clustering in Software Defined Networks

[19] A.B. Sapkota, B.B.R. Dawadi, and C.S.R. Joshi, “Multi-Controller
Placement Optimization Using Naked Mole-Rat Algorithm over
Software-Defined Networking Environment”, Journal of Computer
Networks and Communications, vol. 2022, art. no. 3145276, 2022
(https://doi.org/10.1155/2022/3145276).

[20] Closest Meeting Point [Online]. Available: https://www.educati
ve.io/m/closest-meeting-point

Joshua Jacob, B.E.
School of Computer Science and Engineering
E-mail: joshuajacob1020@gmail.com
KLE Technological University, Hubballi, Karnataka, India
https://www.kletech.ac.in

Sumedha Shinde, Ph.D.
Department of Mathematics
https://orcid.org/0000-0002-4154-0025

E-mail: sumedha@kletech.ac.in
KLE Technological University, Hubballi, Karnataka, India
https://www.kletech.ac.in

Narayan D.G., Ph.D.
School of Computer Science and Engineering
https://orcid.org/0000-0002-2843-8931

E-mail: narayan_dg@kletech.ac.in
KLE Technological University, Hubballi, Karnataka, India
https://www.kletech.ac.in

https://doi.org/10.1155/2022/3145276
https://www.educative.io/m/closest-meeting-point
https://www.educative.io/m/closest-meeting-point
https://www.kletech.ac.in
https://orcid.org/0000-0002-4154-0025
https://www.kletech.ac.in
https://orcid.org/0000-0002-2843-8931
https://www.kletech.ac.in

	Introduction
	Background Study
	Controller Placement Problem in SDN
	Related Work

	Proposed Methodology
	Proposed System Model
	Module Description

	Results and Discussions
	Clustering Results
	Controller Placement Results

	Conclusion

