PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Robust LFT-LPV H∞ control of an underactuated inverted pendulum on a cart with optimal weighting functions selection by ga and es

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article investigates the robust stabilization and control of the inverted pendulum on a cart against disturbances, measure-ment noises, and parametric uncertainties by the LFT-based LPV technique (Linear-Fractional-Transformation based Linear-Parameter-Varying). To make the applying of the LPV technique possible, the LPV representation of the inverted pendulum on a cart model is devel-oped. Besides, the underactuated constraint of this vehicle is overcome by considering both degrees of freedom (the rotational one and the translational one) in the structure. Moreover, the selection of the weighting functions that represent the desired performance is solved by two approaches of evolutionary algorithms; Genetic Algorithms (GA) and Evolutionary Strategies (ES) to find the weighting functions’ optimal parameters. To validate the proposed approach, simulations are performed and they show the effectiveness of the proposed approach to obtain robust controllers against external signals, as well as the parametric uncertainties.
Rocznik
Strony
186--197
Opis fizyczny
Bibliogr. 52 poz., rys., tab., wykr.
Twórcy
  • LMSE Laboratory, Electrical Engineering Department, University of Biskra, BP 145 RP, 07000, Biskra, Algeria
  • LI3CUB Laboratory, Electrical Engineering Department, University of Biskra, BP 145 RP, 07000, Biskra, Algeria
Bibliografia
  • 1. Abbas H.S., Tóth R., Petreczky M., Meskin N., and Moham-madpour J. (2014), Embedding of nonlinear systems in a Linear Pa-rameter-Varying representation, In: Proc. of IFAC World Congress, Cape Town, South Africa, 6907–6913.
  • 2. Abdou L., and Soltani F. (2005), OS-CFAR and CMLD threshold optimization with genetic algorithms, In: Proc. of 3rd International Conference on Systems, Signals & Devices, Vol III Communication and Signal Processing, Sousse, Tunisia.
  • 3. Abdou L., and Soltani F. (2008), OS-CFAR and CMLD threshold optimization in distributed systems using evolotionary strategies, Signal, Image and Video Processing, Vol. 2, No. 2, 155–167.
  • 4. Alcalá E., Puig V., Quevedo J., and Rosolia U. (2020), Autono-mous racing using Linear Parameter Varying-Model Predictive Con-trol (LPV-MPC), Control Engineering Practice, Vol. 95, 104270.
  • 5. Alfaro-Cid E., McGookin E.W., and Murray-Smith D.J. (2008), Optimisation of the weighting function of an H∞ controller using ge-netic algorithms and structured genetic algorithms, International Journal of Systems Science, Vol. 39, No. 4, 335–347.
  • 6. Apkarian P., and Gahinet P. (1995), A convex characterization of gain-scheduled H∞ controller, IEEE Transactions on Automatic Con-trol, Vol. 40, No. 7, 853–864.
  • 7. Beaven R.W., Wright M.T., and Seaward D.R. (1996), Weighting function selection in the H∞ design process, Control Engineering Practice, Vol. 4, No. 7, 625–633.
  • 8. Boubaker O. (2013), The inverted pendulum benchmark in nonlinear control theory: A survey, International Journal of Advanced Robotic Systems, Vol. 10, No. 5, 233–241.
  • 9. Briat C. (2015), Linear Parameter-Varying and Time-Delay Systems: Analysis, Observation, Filtering & Control, Springer-Verlag, Heidel-berg.
  • 10. Choukchou-Braham A., Cherki B., Djemaï M., and Busawon K. (2014a), Classification of Underactuated Mechanical Systems, In: Choukchou-Braham A., Cherki B., Djemaï M., and Busawon K. (eds.), Analysis and Control of Underactuated Mechanical Systems, Springer, London, 35–54.
  • 11. Choukchou-Braham A., Cherki B., Djemaï M., and Busawon K. (2014b), Control Design Schemes for Underactuated Mechanical Systems, In: Choukchou-Braham A., Cherki B., Djemaï M., and Busawon K. (eds.), Analysis and Control of Underactuated Mechani-cal Systems, Springer-Verlag, London, 55–91.
  • 12. Do A.L., Sename O., Dugard L., and Soualmi B. (2011), Multi-objective optimization by genetic algorithms in H∞/LPV control of semi-active suspension, In: Proc. of IFAC World Congress, Milano, Italy, 7162–7167.
  • 13. El-Bardini M., and El-Nagar A.M. (2014), Interval type-2 fuzzy PID controller for uncertain nonlinear inverted pendulum system, ISA Transactions, Vol. 53, 732–743.
  • 14. Fiacchini M., Viguria A., Cano R., Prieto A., Rubio F.R., Aracil J., and Canudas-de-Wit C. (2006), Design and experimentation of a personal pendulum vehicle, In: Proc. of Portuguese Conference on Automatic Control, Lisbona, Portugal.
  • 15. Hansen N., Arnold D.V., and Auger A. (2015), Evolution Strategies, In: Kacprzyk J., and Pedrycz W. (eds.), Springer Handbook of Com-putational Intelligence, Springer, Heidelberg, 871–898.
  • 16. Hasseni S., and Abdou L. (2017), Robust LPV control applied to a personal pendulum vehicle, In: Proc. of International Conference on Sciences and Techniques of Automatic Control and Computer Engi-neering, Monastir, Tunisia, 6–11.
  • 17. Hasseni S., and Abdou L. (2018), Integral backstepping/LFT-LPV H∞ control for the trajectory tracking of a quadcopter, In: Proc. of In-ternational Conference on Systems and Control, Valencia, Spain, 348–353.
  • 18. Hasseni S., and Abdou L. (2020), Robust LPV control for attitude stabilization of a quadrotor helicopter under input saturations, Ad-vances in Technology Innovation, Vol. 5, No. 2, 98–111.
  • 19. Hjartarson A., Seiler P., and Packard A. (2015), LPV Tools: a toolbox for modeling, analysis and synthesis of parameter varying control systems, IFAC PapersOnLine, Vol. 48, No. 26, 136–145.
  • 20. Holland J.H. (1992), Adaptation in Natural and Artificial Systems, MIT Press, MA, USA.
  • 21. Hu J., Bohn C., and Wu H.R. (2000), Systematic H∞ weighting function selection and its application to the real-time control of a ver-tical take-off aircraft, Control Engineering Practice, Vol. 8, No. 3, 241–252.
  • 22. Iwasaki T., and Shibata G. (2001), LPV system analysis via quad-ratic separator for uncertain implicit system. IEEE Transactions on Automatic Control, Vol. 46, No. 10, 1195–1208.
  • 23. Li S., Jiang S., and Pan F. (2019), Event-triggered fault detection for networked LPV systems, Circuits, Systems, and Signal Processing, Vol. 38, No. 7, 2992–3019.
  • 24. Liu T.J., Du X., Sun X.M., Richter H., and Zhu F. (2019), Robust tracking control of aero-engine rotor speed based on switched LPV model, Aerospace Science and Technology, Vol. 91, 382–390.
  • 25. Liu Z., Theilliol D., Gu F., He Y., Yang L., and Han J. (2017), State feedback controller design for affine parameter-dependent LPV sys-tems, IFAC PapersOnLine, Vol. 50, No. 1, 9760–9765.
  • 26. López-Estrada F.R., Ponsart J.C., Theilliol D., Zhang Y., and Astorga-Zaragoza C.M. (2016), LPV model-based tracking control and robust sensor fault diagnosis for a quadrotor UAV, Journal of In-telligent & Robotic Systems, Vol. 84, 163–177.
  • 27. Nguyen A.T., Chevrel P., and Claveau F. (2020), LPV static output feedback for constrained direct tilt control of narrow tilting vehicles, IEEE Transactions on Control Systems Technology, Vol. 28, No. 2, 661–670.
  • 28. Ohhira T., and Shimada A. (2017), Model predictive control for an Inverted pendulum robot with time-varying, IFAC PapersOnLine, Vol. 50, No. 1, 776–781.
  • 29. Packard A. (1994), Gain scheduling via linear fractional transfor-mations, Systems and Control Letters, Vol. 22, No. 2, 79-92.
  • 30. Park M.S., and Chwa D. (2009), Swing-up and stabilization control of inverted-pendulum systems via coupled sliding-mode control method, IEEE Transactions on Industrial Electronics, Vol. 56, No. 9, 3541–3555.
  • 31. Prasad L.B., Tyagi B., and Gupta H.O. (2014), Optimal control of nonlinear inverted pendulum system using PID controller and LQR: Performance analysis without and with disturbance input, Interna-tional Journal of Automation and Computing, Vol. 11, No. 6, 661–670.
  • 32. Raffo G.V., Ortega M.G., and Rubio F.R. (2007), Nonlinear H∞ Control Applied to the Personal Pendulum Car, In: Proc. of European Control Conference, Kos, Greece, 2065–2070.
  • 33. Rechenberg I. (1973), Evolutionstrategie: Optimieruna Technischer Systeme nach Prinzipien der Biologischen Evolution, Frommann-Holzboog-Verlag, Stuttgart, Germany.
  • 34. Robert D., Sename O., and Simon D. (2010), An H∞ LPV design for sampling varying controllers: experimentation with a T-inverted pen-dulum, IEEE Transactions on Control Systems Technology, Vol. 18, No. 3, 741–749.
  • 35. Rotondo D., Cristofaro A., Johansen T.A., Nejjari F., and Puig V. (2018), Diagnosis of icing and actuator faults in UAVs using LPV un-known input observers, Journal of Intelligent & Robotic Systems, Vol. 91, No. 3–4, 651–665.
  • 36. Rudra S., Barai R.K., and Maitra M. (2017), Block Backstepping Control of the Underactuated Mechanical Systems, In: Rudra S., Barai R.K., and Maitra M. (eds.), Block Backstepping Design of Non-linear State Feedback Control Law for Underactuated Mechanical Systems, Springer-Verlag, Singapore, 31–52.
  • 37. Salhi S., Aouani N., and Salhi S. (2015), LPV affine modeling, analysis and simulation of DFIG based wind energy conversion sys-tem, In: Proc. of International Conference on Modelling, Identification and Control, Sousse, Tunisia.
  • 38. Scherer C.W. (2001), LPV control and full block multipliers, Automat-ica, Vol. 37, No. 3, 361–375.
  • 39. Seto D., and Baillieul J. (1994), Control problem in super-articulated mechanical systems, IEEE Transactions on Automatic Control, Vol. 39, No. 14, 2442–2453.
  • 40. Shamma J., and Athans M. (1991), Gain scheduling: potential hazards and possible remedies, In: Proc. of American Control Con-ference, Boston, USA, 516–521.
  • 41. Siradjuddin I., Amalia Z., Setiawan B., Ronilaya F., Rohadi E., Setiawan A., Rahmad C., and Adhisuwignjo S. (2018), Stabilising a cart inverted pendulum with an augmented PID control scheme, MATEC Web of Conference, Vol. 197, 11013.
  • 42. Skogestad S., and Postlethwaite I. (2003), Multivariable Feedback Control, Analysis and Design, John Wiley & Sons, Chichester.
  • 43. Tasoujian S., Salavati S., Franchek M.A., and Grigoriadis K.M. (2020), Robust delay-dependent LPV synthesis for blood pressure control with real-time Bayesian parameter estimation, IET Control Theory & Applications, Vol. 14, No. 10, 1334–1345.
  • 44. Vu V.T., Sename O., Dugard L., and Gaspar P. (2017), Multi objec-tive H∞ active-roll bar control for heavy vehicles, IFAC Paper-sOnLine, Vol. 50, No. 1, 13802–13807.
  • 45. Wright A. (1991), Genetic Algorithms for Real Parameter Optimiza-tion, Morgan Kaufmann, San Mateo, California.
  • 46. Wu F. (2001), A generalized LPV system analysis and control syn-thesis framework, International Journal of Control, Vol. 74, No. 9, 745–759.
  • 47. Wu F., Yang X., Packard A., and Becker G. (1996), Induced L2 norm control for LPV systems with bounded parameter variation rates, International Journal of Robust and Nonlinear Control, Vol. 6, No. 9-10, 983–998.
  • 48. Xu F., Tan J., Wang Y., Wang X., Liang B., and Yuan B. (2019), Robust fault detection and set-theoretic UIO for discrete-time LPV systems with state and output equations scheduled by inexact scheduling variables, IEEE Transactions on Automatic Control, Vol. 64, No. 12, 4982–4997.
  • 49. Yang D., Wang Y., and Chen Z. (2020), Robust fault diagnosis and fault tolerant control for PEMFC system based on an augmented LPV observer, International Journal of Hydrogen Energy, Vol. 45, No. 24, 13508–13522.
  • 50. Yeo B.K., and Lu Y. (1999), Array failure correction with a genetic algorithm, IEEE Transactions on Antennas and Propagation, Vol. 47, No. 7, 823–828.
  • 51. Younis W., and Abdelati M. (2009), Design and implementation of an experimental Segway model, AIP Conference Proceedings, Vol. 1107, 350–354.
  • 52. Zhou K., and Doyle J.C. (1998), Essentials of Robust Control, Prentice Hall, Upper Saddle River, NJ.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d77f42ae-7638-4550-9ea5-6b48e1fd0fbf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.