PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A flotation combined extraction process for improving the whiteness of phosphogypsum

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Every year, the production of industrial phosphoric acid generates more than 100 Tg of phosphogypsum (PG), leading to significant environmental damage and the occupation of a vast amount of land space. The urgent need to explore applications for PG has become increasingly apparent. However, impurities such as organic substances, slime, phosphorite, and SiO2 reduce the whiteness of PG, making it difficult to utilize for high-value applications. To address this issue, this study employed a two-stage flotation process to remove the majority of impurities, including SiO2, organic substances, and fine slime adhered to the surface of PG particles. The raw PG sample was first sieved to remove some SiO2 particles. After flotation, sulfuric acid and tributyl phosphate were introduced to decompose the PG particles and remove the impurities wrapped inside. Following this flotation combined extraction process, the whiteness of the PG sample improved from 54.1% to 92.9%, meeting the requirements for building walls and filters.
Rocznik
Strony
art. no. 170043
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
  • National Engineering and Technology Center for the Development & Utilization of Phosphorous Resources, Kunming 650600, Yunnan, PR China
  • Yunnan Phosphate Chemical Group Co. Ltd, Phosphate Resources Engineering Research Branch, Kunming 650113, China
autor
  • National Engineering and Technology Center for the Development & Utilization of Phosphorous Resources, Kunming 650600, Yunnan, PR China
  • Yunnan Phosphate Chemical Group Co. Ltd, Phosphate Resources Engineering Research Branch, Kunming 650113, China
autor
  • National Engineering and Technology Center for the Development & Utilization of Phosphorous Resources, Kunming 650600, Yunnan, PR China
  • Yunnan Phosphate Chemical Group Co. Ltd, Phosphate Resources Engineering Research Branch, Kunming 650113, China
autor
  • National Engineering and Technology Center for the Development & Utilization of Phosphorous Resources, Kunming 650600, Yunnan, PR China
  • Yunnan Phosphate Chemical Group Co. Ltd, Phosphate Resources Engineering Research Branch, Kunming 650113, China
autor
  • National Engineering and Technology Center for the Development & Utilization of Phosphorous Resources, Kunming 650600, Yunnan, PR China
  • Yunnan Phosphate Chemical Group Co. Ltd, Phosphate Resources Engineering Research Branch, Kunming 650113, China
autor
  • National Engineering and Technology Center for the Development & Utilization of Phosphorous Resources, Kunming 650600, Yunnan, PR China
  • Yunnan Phosphate Chemical Group Co. Ltd, Phosphate Resources Engineering Research Branch, Kunming 650113, China
autor
  • National Engineering and Technology Center for the Development & Utilization of Phosphorous Resources, Kunming 650600, Yunnan, PR China
  • Yunnan Phosphate Chemical Group Co. Ltd, Phosphate Resources Engineering Research Branch, Kunming 650113, China
Bibliografia
  • CHENG, J., ZHANG, J., XIE, F., ZHANG, Y., 2020. Performace of a Kind of Organic Emulsion Coated Phosphogypsum Particles. Journal of Wuhan University of Technology-Mater. 35, 872–878.
  • ZVIMBA, J. N., MULOPO, J., BOLOGO, L. T., MATHYE, M., 2012. An evaluation of waste gypsum-based precipitated calcium carbonate for acid mine drainage neutralization. Water Science and Technology. 65,1577–1582 .
  • YANG, J., LIU , W., ZHANG, L., XIAO ,B., 2009. Preparation of load-bearing building materials from autoclaved phosphogypsum. Constr. Build. Mater. 23,687–693.
  • XU, J., FAN, L., XIE, Y., WU, G., 2018. Recycling-equilibrium strategy for phosphogypsum pollution control in phosphate fertilizer plants. Journal of Cleaner Production. 215, 175-197.
  • LYSANDROU, M., PASHALIDIS, I., 2008. Uranium chemistry in stack solutions and leachates of phosphogypsum disposed at a coastal area in Cyprus. Journal of Environmental Radioactivity.99, 359–366.
  • RUTHERFORD, M.J., DUDAS, P.M., SAMEK, R.A., 1994. Environmental impacts of phosphogypsum. The Science of the Total Environment. 149, 1-38.
  • ENNACIRI, Y., ZDAH, I., EL ALAOUI-BELGHITI, H., BETTACH, M., 2019. Characterization and purification of waste phosphogypsum to make it suitable for use in the plaster and the cement industry. Chemical Engineering Communications. 207, 1–11.
  • CANOVAS, C., MACÍAS, F., PEREZ-LOPEZ, R., BASALLOTE, M.D., MILLÁN-BECERRO, RICARDO,. 2018. Valorization of wastes from the fertilizer industry: current status and future trends. J. Clean. Prod. 174, 678-690 .
  • WANG, J.C., YANG, K., LU, S.J., 2011. Preparation and characterization of novel silicone rubber composites based on organophilic calcium sulfate whisker, High. Perform. Polym. 23, 141-150.
  • ALCORDO I. S., RECHCIGL J. E., 1993. Phosphogypsum in Agriculture: A Review. Advances in Agronomy. 49, 55-118
  • MASHIFANA, T. P., 2019. Chemical treatment of phosphogypsum and its potential application for building and construction. Procedia Manufacturing. 35, 641–648.
  • ZHOU, J., ZHANG, Y., SHU, Z., WANG, Y., YAKUBU, Y., ZHAO, Y., LI, X., 2019. Enhancing waterproof performance of phosphogypsum non-fired ceramics by coating silane-coupled unsaturated polyester resin. Materials Letters. 252, 52-55.
  • YANG, J., NIE, S., 2017. Effects of calcium sulfate whisker on the mechanical property. morphological structure and thermal degradation of poly (lactic acid) composites. Polymer Degradation and Stability. 144,270–280.
  • ZHAO, H.T., BAO, W.J., SUN, Z.H., LI, S.G. ,LI, H.Q., LIN, W.G.,2017. Deep removal of impurities from phosphogypsum, Chemical industry and engineering progress. 36, 4.
  • PÉREZ-MORENO, S. M., GÁZQUEZ, M. J., PÉREZ-LÓPEZ, R., VIOQUE, I., BOLÍVAR, J. P., 2018. Assessment of natural radionuclides mobility in a phosphogypsum disposal area. Chemosphere. 211, 775–783.
  • SAADAOUI, E., GHAZEL, N., BEN ROMDHANE, C., MASSOUDI, N., 2017. Phosphogypsum: Potential uses and problems–a review. Int. J. Environ. Stud. 74, 558–567.
  • CHERNYSH, Y., YAKHNENKO, O., CHUBUR, V., ROUBÍK, H.,2021. Phosphogypsum Recycling: A Review of Environmental Issues, Current Trends, and Prospects. Applied Sciences. 11, 15-75.
  • POTGIETER, J.H., POTGIETER, S.S., MCCRINDLE, R.I., STRYDOM, C.A., 2003. An investigation into the effect of various chemical and physical treatments of a South African phosphogypsum to render it suitable as a set retarder for cement. Cement Concr. Res. 33, 1223–1227.
  • XIAO, J.H., LU, T., ZHUANG, Y.F., JIN, H., 2022, A Novel Process to Recover Gypsum from Phosphogypsum. Materials, 15, 5.
  • JING, Y.,YUN ,L., CHEN, S ., LI,D.Y., TANG,H., 2018. Effects of phosphogypsum, superphosphate, and dicyandiamide on gaseous emission and compost quality during sewage sludge composting. Bioresource Technology.270, 368-376.
  • FANG, J., GE, YY., CHEN, ZJ., XING, BL., BAO, SX.,YONG, Q.,CHI, R.,YANG, SY.,NI, BJ, 2022. Flotation purification of waste high-silica phosphogypsum, Journal of Environmental Management, 320, 115824.
  • WANG J., DONG F., WANG Z.J., YANG, F.H., DU, M.X, FU, K.B., WANG, Z., 2020. A novel method for purification of phosphogypsum. Physicochemical Problems of Mineral Processing. 56, 975-983.
  • SINGH, M., GARG, M., REHSI, S. S., 1993.Purifying phosphogypsum for cement manufacture. Construction and Building Materials. 7, 3-7.
  • CAO, W.X., YI, W., PENG, J.H.,LI, J.,YIN, S.H., 2022.Recycling of phosphogypsum to prepare gypsum plaster: Effect of calcination temperature.journal of building engineering. 45, 28-35.
  • MASHIFANA T P., SITHOLE T., 2020. Recovery of Silicon Dioxide from Waste Foundry Sand and Alkaline Activation of Desilicated Foundry Sand, Journal of Sustainable Metallurgy. 7, 700-714.
  • ZAHERI, PARISA., HOSSEIN, ABOLGHASEMI., MOHAMMAD, GHANNADI MARAGHE., TORAJ, MOHAMMADI., 2015. Intensification of Europium extraction through a supported liquid membrane using mixture of D2EHPA and Cyanex272 as carrier. Chemical Engineering and Processing: Process Intensification. 92, 18-24.
  • ZHANG, F., WU, W., BIAN,X., ZENG,W., 2014. Synergistic extraction and separation of lanthanum (iii) and cerium (iii) using a mixture of 2-ethylhexylphosphonic mono-2-ethylhexyl ester and di-2-ethylhexyl phosphoric acid in the presence of two complexing agents containing lactic acid and citric acid. Hydrometallurgy. 149, 238-243.
  • DONG, L., QIAO, L., ZHENG, Q., SHEN., P., QIN ,W., JIAO, F., LIU, D., 2023. Enhanced adsorption of citric acid at the calcite surface by adding copper ions: Flotation separation of scheelite from calcite. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 663, 131036.
  • CAI, J. , SU, C., MA, Y.,YU, X., PENG, R., LI, J., ZHANG, X., FANG, J., SHEN,P., LIU, D., 2022. Role of ammonium sulfate in sulfurization flotation of azurite: Inhibiting the formation of copper sulfide colloid and its mechanism. International Journal of Mining Science and Technolog. 32, 575-584.
  • LI, J.L., DENG ,W., LIU ,Z.C,. PEI ,B., NING, S., CAI ,Z., LIU, R.Z,2023. Detrimental effect of dissolved natural organic matter on molybdenite flotation. Minerals Engineering. 193, 108006.
  • CHRISTENSEN, A. N., OLESEN, M., CERENIUS, Y., JENSEN, T.R., 2008. Cheminform Abstract: Formation and Transformation of Five Different Phases in the CaSO4 -H2O System: Crystal Structure of the Subhydrate β-CaSO4·0.5H2O and Soluble Anhydrite CaSO4. Chemistry of Materials. 6, 2124–2132.
  • NIE, W., WEN, S., LIU, D., ZHANG, Q., FENG, Q., 2020. Leaching behaviors of impurities in titanium-bearing electric furnace slag in sulfuric acid. Processes. 8, 56.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d77316c3-afa5-4511-9488-9f52883e0951
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.