PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrodynamics of gas flow through anisotropic porous materials in phenomenological and numerical terms

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study discusses results of experiments on hydrodynamic assessment of gas flow through backbone (skeletal) porous materials with an anisotropic structure. The research was conducted upon materials of diversified petrographic characteristics – cokes. The study was conducted for a variety of hydrodynamic conditions, using air. The basis for assessing hydrodynamics of gas flow through porous material was a gas stream that results from the pressure forcing such flow. The results of measurements indicate a clear impact of the type of material on the gas permeability, and additionally – as a result of their anisotropic internal structure – to a significant effect of the flow direction on the value of gas stream. In aspect of scale transfer problem, a method of mapping the flow geometry of skeletal materials has been developed and usefulness of numerical methods has been evaluated to determine pressure drop and velocity distribution of gas flow. The results indicate the compliance of the used calculation method with the result of experiments.
Słowa kluczowe
EN
PL
Rocznik
Strony
149--167
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
  • Institute of Technology and Life Sciences, Renewable Energy Department – Poznan Branch, Biskupińska 67, 60-463 Poznan, Poland
autor
  • Opole University of Technology, Faculty of Mechanical Engineering, Department of Process Engineering, Mikołajczyka 5, 45-271 Opole, Poland
Bibliografia
  • [1] Piecuch T.: Darcy’s Law as basis for theoretical analysis of specific cases of filtration process. Rocznik Ochrona Środowiska 11(2009), 299–319. (in Polish).
  • [2] Orzechowski Z., Prywer J., Zarzycki R.: Mechanics of Fluids in Engineering and Environmental Protection. WNT, Warszawa 2009 (in Polish).
  • [3] Błaszczyk M.: Research upon Processes of Migration of Oil Derivatives and their Emulsions in Porous Structures. PhD thesis, Lodz University of Technology, Łódź 2014 (in Polish).
  • [4] Wałowski G.: Hydrodynamics of Gas Flow through Porous Deposit. PhD thesis, Opole University of Technology, Opole 2015 (in Polish).
  • [5] Ergun S.: Fluid flow through packed columns. Carnegie Institute of Technology, Pittsburgh, Pennsylvania, Chemical Engineering Progress 48(1952), 2, 89–94.
  • [6] Brauer H.: Grundlagen der Einphasen – und Mehrphasen Strömungen. Verlag Säuerländer, Frankfurt am Main 1971.
  • [7] Skotniczy P.: Model of air flow in a porous medium including internal heat sources. Prace Instytutu Mechaniki Górotworu PAN 10(2008), 1-4, 103–113.
  • [8] Warpechowski K., Jopkiewicz A.: Determination of flow resistance co-efficient in coke deposit. Archiwum Odlewnictwa. PAN 2(2002), 5, 124–131 (in Polish).
  • [9] Hehlmann J., Pietrasik E., Kujawska E., Bania D.: Hybrid apparatus with granular deposit in waste combustion system. Środkowo-Pomorskie Towarzystwo Naukowe Ochrony Środowiska, Rocznik Ochrony Środowiska 11(1999), 281–297 (in Polish).
  • [10] Mertas B., Sobolewski A., Różycki G.: Research on gas permeability of plastic coal layer as a factor affecting the amount of generated decompression pressure. Karbo 2(2013), 163–171 (in Polish).
  • [11] Dyga R., Płaczek M.: Permeability and co-efficient of aluminium foam inertion in open cells. Inż. Ap. Chem. 52(2013), 4, 300–301.
  • [12] Wong J.T.F., Chen Z., Ng C.W.W., Wong M.H.: Gas permeability of biocharamended clay: potential alternative landfill final cover material. Environ. Sci. Pollut. R. DOI 10.1007/s11356-015-4871-2.
  • [13] Darcy H.: Les Fontaines Publiques de la ville de Dijon. Paris: Victor Valmont, 1856.
  • [14] Jukka K.: Darcy friction factor formulae in turbulent pipe flow. Lunowa Fluid Mechanics Paper 110727(2011), 1–11.
  • [15] Dziubiński M., Prywer J.: Mechanics of Two-Phase Fluids. WNT, Warsaw 2009.
  • [16] Palica M., Chmiel K., Waluś J.: Hydraulics of selected biologically active beds. Rocznik Ochrony Środowiska 1(1999), 85–121 (in Polish).
  • [17] Bonet J.-P., Topin F., Tadrist L.: Flow laws in metal foams: Compressibility and pore size effects. Transport Porous Med. 73(2008), 2, 233–254.
  • [18] Peszyńska M., Trykozko A, Sobieski W.: Forchheimer law in the computational and experimental of flow through porous media at porescale and mesoscale. GAKUTO International Series. Math. Sci. Appl. 32(2010, 463–482.
  • [19] Hehlmann J.: Filter test with moving grain filtration partition. PhD thesis, Politechnika Śląska, 1975 (in Polish).
  • [20] Hehlmann J., Pietrasik E.: Ecological Formulated Fuels. Selected aspects of product engineering. Monograph. Monografie KOMAG 8, 135, Gliwice 2005.
  • [21] Collective work: Examination of a Dryer with a Sliding Bed. BW-325, Politechnika Śląska, Gliwice 1993 (in Polish).
  • [22] Collective work: New Formable Fuels with Reduced Emissions of Harmful Substances. Own Research. BW-477, Politechnika Śląska, Gliwice 1995 (in Polish).
Uwagi
EN
The study conducted as part of the project financed by the National Centre for Research and Development realised in the BIOSTRATEG programme, contract No BIOSTRATEG1/269056/5/NCBR/2015 11.08.2015.
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d770af4c-32b1-43f6-aa5f-b769380544e1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.