Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Bacteria constitute a large domain of prokaryotic microorganisms present in marine ecosystems and play a significant role in energy flow and nutrient cycling. Bacterial community changes may affect organisms of higher trophic levels. We conducted field monitoring to study the relationship between dissolved organic carbon (DOC) and the bacterial community in the coastal waters of Incheon, Korea. Results showed that abiotic factors, such as temperature, salinity, dissolved oxygen (DO), pH, and dissolved inorganic nutrients, were not significantly different among the sampling sites during the study period. On the other hand, nutrient conditions were significantly different among the sites between 2012-2013 and 2014. Nitrogen was the limiting factor from 2012 to 2013, and phosphate in 2014. Biotic data showed that DOC affected both bacterial abundance and bacterial composition. A similar fluctuation pattern was observed for phytoplankton and Chlorophyll a. However, a close correlation was not observed between phytoplankton and other variables. Redundancy analysis (RDA) and Pearson correlation analysis of abiotic and biotic factors also showed that DOC concentration and bacterial abundance were correlated. Therefore, DOC appears to be an important factor affecting bacterial abundance and composition in the coastal waters of Incheon, Korea.
Czasopismo
Rocznik
Tom
Strony
50--61
Opis fizyczny
Bibliogr. 55 poz.
Twórcy
autor
- Department of Life Science, College of Natural Sciences, Hanyang University, 222 Wangsimniro, Seongdong-gu, Seoul 133-791, Republic of Korea
- Key Laboratory of Marine Ecosystem and Biogeochemistry, The Second Institute of Oceanography, State Oceanic Administration (SOA), Hangzhou, 310012, China
autor
- Department of Life Science, College of Natural Sciences, Hanyang University, 222 Wangsimniro, Seongdong-gu, Seoul 133-791, Republic of Korea
autor
- Department of Life Science, College of Natural Sciences, Hanyang University, 222 Wangsimniro, Seongdong-gu, Seoul 133-791, Republic of Korea
autor
- Department of Life Science, College of Natural Sciences, Hanyang University, 222 Wangsimniro, Seongdong-gu, Seoul 133-791, Republic of Korea
autor
- Department of Life Science, College of Natural Sciences, Hanyang University, 222 Wangsimniro, Seongdong-gu, Seoul 133-791, Republic of Korea
autor
- Department of Life Science, College of Natural Sciences, Hanyang University, 222 Wangsimniro, Seongdong-gu, Seoul 133-791, Republic of Korea
Bibliografia
- [1]. Azam, F. & Malfatti, F. (2007). Microbial structuring of marine ecosystems. Nat Rev Micro 5(10): 782-791. DOI: 10.1038/ nrmicro1747.
- [2]. Buchan, A., LeCleir, G.R., Gulvik, C.A. & González, J.M. (2014). Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12(10): 686-698. DOI: 10.1038/nrmicro3326.
- [3]. Campbell, B.J. & Kirchman, D.L. (2013). Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. The ISME journal 7(1): 210-220. DOI: 10.1038/ismej.2012.93.
- [4]. Chen, B., Wang, J., Tang, J. & Wen, S. (2002). Prediction to trend of nutrient status in Meizhou Bay, Fujian. Mar. Biol. J. Oceanogr. in Taiwan Strait/Taiwan Haixia. Xiamen 21(3): 322-327
- [5]. Cotter, P.D. & Hill, C. (2003). Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol. Mol. Biol. Rev. 67(3): 429-453. DOI: 10.1128/MMBR.67.3.429-453.2003.
- [6]. Crump, B.C., Kling, G.W., Bahr, M. & Hobbie, J.E. (2003). Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source. Appl. Environ. Microbiol. 69(4): 2253-2268. DOI: 10.1128/ AEM.69.4.2253-2268.2003.
- [7]. Del Giorgio, P.A. & Cole, J.J. (1998). Bacterial growth efficiency in natural aquatic systems. Annu. Rev. Ecol. Syst. 503-541.
- [8]. Dubois, J., Hill, S., England, L, Edge, T., Masson, L et al. (2004). The development of a DNA microarray-based assay for the characterization of commercially formulated microbial products. J. Microbiol. Methods 58(2): 251-262. DOI: 10.1016/j.mimet.2004.04.011.
- [9]. Ederington, M.C., McManus, G.B. & Harvey, H.R. (1995). Trophic transfer of fatty acids, sterols, and a triterpenoid alcohol between bacteria, a ciliate, and the copepod Acartia tonsa. Limnol. Oceanogr. 40(5): 860-867. DOI: 10.4319/ lo.1995.40.5.0860.
- [10]. Eiler, A., Langenheder, S., Bertilsson, S. & Tranvik, L.J. (2003). Heterotrophic bacterial growth efficiency and community structure at different natural organic carbon concentrations. Appl. Environ. Microbiol. 69(7): 3701-3709. DOI: 10.1128/AEM.69.7.3701-3709.2003.
- [11]. Elser, J.J., Stabler, L.B. & Hassett, R.P. (1995). Nutrient limitation of bacterial growth and rates of bacterivory in lakes and oceans: a comparative study. Aquat. Microb. Ecol. 9(2): 105-110. DOI: 10.3354/ame009105.
- [12]. Falkowski, P.G. & Raven, J.A. (2007). Aquatic photosynthesis: Princeton University Press.
- [13]. Ferrari, V. & Hollibaugh, J. (1999). Distribution of microbial assemblages in the Central Arctic Ocean Basin studied by PCR/DGGE: analysis of a large data set. Hydrobiologia 401: 55-68. DOI: 10.1023/A:1003773907789.
- [14]. Findlay, S.E. (2005). Increased carbon transport in the Hudson River: unexpected consequence of nitrogen deposition? Front. Ecol. Environ. 3(3): 133-137. DOI: 10.1890/1540-9295(2005)003[0133:ICTITH]2.0.CO;2.
- [15]. Freeman, C, Evans, C, Monteith, D., Reynolds, B. & Fenner, N. (2001). Export of organic carbon from peat soils. Nature 412(6849): 785-785. DOI: 10.1038/35090628.
- [16]. Freeman, C, Fenner, N., Ostle, N., Kang, H., Dowrick, D. et al. (2004). Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 430(6996): 195-198. DOI: 10.1038/nature02707.
- [17]. Fuhrman J. (1992). Bacterioplankton roles in cycling of organic matter: the microbial food web. In Primary productivity and biogeochemical cycles in the sea. Springer.
- [18]. Garnett, M., Ineson, P. & Stevenson, A. (2000). Effects of burning and grazing on carbon sequestration in a Pennine blanket bog, UK. The Holocene 10(6): 729-736. DOI: 10.1191/09596830094971.
- [19]. Gonzalez, J.M., Sherr, E.B. & Sherr, B.F. (1990). Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl. Environ. Microbiol. 56(3): 583-589.
- [20]. Kirchman, D. (1994). The uptake of inorganic nutrients by heterotrophic bacteria. Microb. Ecol. 28(2): 255-271. DOI: 10.1007/BF00166816.
- [21]. Kjelleberg, S. (1993). Starvation in bacteria. Springer.
- [22]. Kuuppo-Leinikki, P. (1990). Protozoan grazing on planktonic bacteria and its impact on bacterial population. Mar. Ecol. Prog. Ser. 63(2): 227-238.
- [23]. Larsson, U. & Hagström, A. (1979). Phytoplankton exudate release as an energy source for the growth of pelagic bacteria. Mar. Biol. 52(3): 199-206. DOI: 10.1007/ BF00398133.
- [24]. Maas, E.W., Law, CS., Hall, J.A., Pickmere, S., Currie, K.I. et al. (2013). Effect of ocean acidification on bacterial abundance, activity and diversity in the Ross Sea, Antarctica. Aquat Microb. Ecol. 70(1): 1-15. DOI: 10.3354/ ame01633.
- [25]. Morrow, K., Paul, V., Liles, M. & Chadwick, N. (2011). Allelochemicals produced by Caribbean macroalgae and cyanobacteria have species-specific effects on reef coral microorganisms. Coral Reefs 30(2): 309-320. DOI: 10.1007/ s00338-011-0747-1.
- [26]. Muyzer, G., Teske, A., Wirsen, CO. & Jannasch, H.W. (1995). Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch. Microbiol. 164(3): 165-172. DOI: 10.1007/BF02529967.
- [27]. Nester, E.W. (2001). Microbiology: a human perspective. McGraw-Hill.
- [28]. Ogawa, H. & Tanoue, E. (2003). Dissolved organic matter in oceanic waters. J. Oceanogr. 59(2): 129-147. DOI: 10.1023/A:1025528919771.
- [29]. Park, B.S., Wang, P., Kim, J.H., Kim, J.-H., Gobler, C.J. et al. (2014). Resolving the intra-specific succession within Cochlodinium polykrikoides populations in southern Korean coastal waters via use of quantitative PCR assays. Harmful Algae 37: 133-141. DOI: 10.1016/j.hal.2014.04.019.
- [30]. Park, N., Kim, J.H. & Cho, J. (2008). Organic matter, anion, and metal wastewater treatment in Damyang surface-flow constructed wetlands in Korea. Ecol. Eng. 32(1): 68-71.
- [31]. Park, S., Park, G., Seok, K., Oh, H., Lee, Y. et al. (1999). Spatio temporal variation of water quality and eutrophication in the Kyunggi Bay of Yellow Sea, Korea. Bull. Nat. 1: 189-204.
- [32]. Pomeroy, L.R. & Wiebe, W.J. (2001). Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquat. Microb. Ecol. 23(2): 187-204. DOI: 10.3354/ ame023187.
- [33]. Porter, K. & Feig, Y (1980). The use of DAPI for identification and enumeration of bacteria and blue-green algae. Limnol. Oceanogr. 25: 943-948.
- [34]. Ratkowsky, D., Olley, J., McMeekin, T. & Ball, A. (1982). Relationship between temperature and growth rate of bacterial cultures. J. Bacteriol. 149(1): 1-5.
- [35]. Redfield, AC. (1958). The biological control of chemical factors in the environment. Am. Sci. 205-221.
- [36]. Roh, S.W., Abell, G.C, Kim, K.-H., Nam, Y.-D. & Bae, J.-W. (2010). Comparing microarrays and next-generation sequencing technologies for microbial ecology research. Trends Biotechnol. 28(6): 291-299. DOI: 10.1016/j.tibtech.2010.03.001.
- [37]. Samarajeewa, A., Hammad, A., Masson, L., Khan, I., Scroggins, R. et al. (2015). Comparative assessment of next-generation sequencing, denaturing gradient gel electrophoresis, clonal restriction fragment length polymorphism and cloning-sequencing as methods for characterizing commercial microbial consortia. J. Microbiol. Methods 108: 103-111. DOI: 10.1016/j.mimet.2014.11.013.
- [38]. Schimel, D.S. (1995). Terrestrial ecosystems and the carbon cycle. Global Change Biol. 1(1): 77-91. DOI: 10.1111/j.1365- 2486.1995.tb00008.x.
- [39]. Schneider, B. & Schmittner, A. (2006). Simulating the impact of the Panamanian seaway closure on ocean circulation, marine productivity and nutrient cycling. Earth Planet Sci. Lett. 246(3), 367-380. DOI: 10.1016/j.epsl.2006.04.028.
- [40]. Smith, J.E., Shaw, M., Edwards, R.A., Obura, D., Pantos, O. et al. (2006). Indirect effects of algae on coral: algae-mediated, microbe-induced coral mortality. Ecol. Lett. 9(7): 835-845. DOI: 10.1111/j.1461-0248.2006.00937.x.
- [41]. Smith, R., Gosselin, M., Kudoh, S., Robineau, B. & Taguchi, S. (1997). DOC and its relationship to algae in bottom ice communities. J. Mar. Syst. 11(1): 71-80. DOI: 10.1016/ S0924-7963(96)00029-2.
- [42]. Song, M.-Y., Sohn, M.-H., Im, Y.-J., Kim, J.-B., Kim, H.-Y. et al. (2008). Seasonal variation in the species composition of bag-net catch from the coastal waters of incheon, Korea. Korean Journal of Fisheries and Aquatic Sciences 41(4): 272- 281. DOI: 10.5657/kfas.2008.41.4.272.
- [43]. Strickland, J.D.H. & Parsons, T.R. (1972). A practical handbook of seawater analysis. Ottawa, Canada: Fisheries Research Board of Canada.
- [44]. Sundh, I. (1992). Biochemical composition of dissolved organic carbon derived from phytoplankton and used by heterotrophic bacteria. Appl. Environ. Microbiol. 58(9): 2938-2947.
- [45]. Thornton, DC (2014). Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. Eur. J. Phycol. 49(1): 20-46. DOI: 10.1080/09670262.2013.875596.
- [46]. Tsai, A.Y, Gong, G.-C & Huang, Y.W. (2013). Variations of microbial loop carbon flux in western subtropical Pacific coastal water between warm and cold season. J. Exp. Mar. Biol. Ecol. 449, 111-117. DOI: 10.1016/j.jembe.2013.09.006.
- [47]. Tyrrell, T. (1999). The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400(6744): 525-531. DOI: 10.1038/22941.
- [48]. Verity, P. & Smetacek, V. (1996). Organism life cycles, predation, and the structure of marine pelagic ecosystems. Mar. Ecol. Prog. Ser. 130: 277-293.
- [49]. Wang, H., Hill, R.T., Zheng, T., Hu, X. & Wang, B. (2016). Effects of bacterial communities on biofuel-producing microalgae: stimulation, inhibition and harvesting. Crit. Rev. Biotechnol. 36(2): 341-352. DOI: 10.3109/07388551.2014.961402.
- [50]. Wang, P., Park, B.S., Kim, J.H., Kim, J.-H., Lee, H.-O. et al. (2014). Phylogenetic position of eight Amphora sensu lato (Bacillariophyceae) species and comparative analysis of morphological characteristics. Algae 29(2): 57-73. DOI: 10.4490/algae.2014.29.2.057.
- [51]. Watanabe, T., Asakawa, S., Nakamura, A., Nagaoka, K. & Kimura, M. (2004). DGGE method for analyzing 16S rDNA of methanogenic archaeal community in paddy field soil. FEMS Microbiol. Lett. 232(2): 153-163. DOI: 10.1016/S0378- 1097(04)00045-X.
- [52]. Whitman, W.B., Coleman, D.C. & Wiebe, W.J. (1998). Prokaryotes: the unseen majority. PNAS 95(12): 6578-6583.
- [53]. Worrall, F., Burt, T. & Shedden, R. (2003). Long term records of riverine dissolved organic matter. Biogeochemistry 64(2): 165-178.
- [54]. Yoo, J.S. (2008). Productivity and abundance of bacteria and phytoplankton in Incheon Dock, western coast of Korea. J. Environ. Biol. 29: 531-534.
- [55]. Yoon, B.I. & Woo, S.-B. (2013). Correlation between freshwater discharge and salinity intrusion in the Han River Estuary, South Korea. J. Coast. Res. 2(65): 1247. DOI: 10.2112/SI65- 211.1.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d76f47fc-8fc9-42a4-90d1-46f22c4e9e4f