PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microwave assisted production of biodiesel using CaO nano-catalyst produced from mango fallen leaves extract

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With technological development, the use of modern methods in producing biofuels, especially biodiesel, has become necessary to make the process more sustainable and time-efficient. In this study, the feasibility of biodiesel production from waste cooking oil using CaO nanocatalyst produced from mango fallen leaves extract with the aid of microwave was explored. The effect of key parameters such as microwave power, methanol to oil w/w ratio, reaction time, and catalyst loading was studied. The results demonstrated that the highest yield of 96% was obtained at 10% microwave power at 15 minutes, 40% methanol to oil w/w ratio, and 3% catalyst loading. In addition, the augmentation in the temperature may cause to reduced yield of biodiesel. The physical and fuel characteristics of the produced biodiesel were measured; it had a viscosity of 5 mm2/s, a density of 0.889 g/cm3, and a flash point of 130 °C. In addition, the produced biodiesel was characterized by FTIR and gas chromatography-mass spectrometer (GC-MS) analysis which ensured the presence of methyl ester.
Rocznik
Strony
248--259
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Department of Chemical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
  • Department of Chemical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
Bibliografia
  • 1. Abbas, A. S., Abbas, R. N. (2015). Preparation and characterization of nay zeolite for biodiesel production. Iraqi Journal of Chemical and Petroleum Engineering, 16(2), 19–29. www.iasj.net
  • 2. Abd, M. F., AL-yaqoobi, A. M. (2024). The potential significance of microwave-assisted catalytic pyrolysis for valuable bio-products driven from Albizia tree. Applied Science and Engineering Progress. https://doi.org/10.14416/j.asep.2024.07.016
  • 3. Abd, M. F., Al-yaqoobi, A. M., Abdul-Majeed, W. S. (2024). Catalytic microwave pyrolysis of albizia branches using iraqi bentonite clays. Iraqi Journal of Chemical and Petroleum Engineering, 25(2), 175–186. https://doi.org/10.31699/ijcpe.2024.2.16
  • 4. Al-Yaqoobi, A., Al-Rikabey, M., Al-Mashhadani, M. (2021). Electrochemical harvesting of microalgae꞉ Parametric and cost-effectivity comparative investigation. Chemical Industry and Chemical Engineering Quarterly, 27(2), 121–130. https://doi.org/10.2298/CICEQ191213031A
  • 5. Al-yaqoobi, A. M. (2023). Biomass conversion into biofuel productions The feasibility of utilizing microwave-assisted pyrolysis for Albizia branches biomass conversion into biofuel productions. October. https://doi.org/10.14710/ijred.2023.56907
  • 6. Ali Abbas, R., M. Flayeh, H. (2019). Bioethanol (Biofuel) production from low grade dates. Iraqi Journal of Chemical and Petroleum Engineering, 20(4), 41–47. https://doi.org/10.31699/ijcpe.2019.4.7
  • 7. Alshahidy, B. A., Abbas, A. S. (2021). Comparative study on the catalytic performance of a 13X zeolite and its dealuminated derivative for biodiesel production. Bulletin of Chemical Reaction Engineering and Catalysis, 16(4), 763–772. https://doi.org/10.9767/bcrec.16.4.11436.763-772
  • 8. Ansori, A., Wibowo, S. A., Kusuma, H. S., Bhuana, D. S., Mahfud, M. (2019). Production of Biodiesel from Nyamplung (Calophyllum inophyllum L.) using Microwave with CaO Catalyst from Eggshell Waste: Optimization of Transesterification Process Parameters. Open Chemistry, 17(1), 1185–1197. https://doi.org/10.1515/chem-2019-0128
  • 9. Nakkash, B. N., Al-Karkhi, R. S. (2014). Simulation of batch reactive distillation for biodiesel production from oleic acid esterification. Iraqi Journal of Chemical and Petroleum Engineering, 15(1), 9–21. https://doi.org/10.31699/ijcpe.2014.1.2
  • 10. Banerjee, A., Chakraborty, R. (2009). Parametric sensitivity in transesterification of waste cooking oil for biodiesel production—A review. Resources, Conservation and Recycling, 53(9), 490–497. https://doi.org/10.1016/j.resconrec.2009.04.003
  • 11. Banković-Ilić, I. B., Stamenković, O. S., Veljković, V. B. (2012). Biodiesel production from non-edible plant oils. Renewable and Sustainable Energy Reviews, 16(6), 3621–3647. https://doi.org/10.1016/j.rser.2012.03.002
  • 12. Buasri, A., Rattanapan, T., Boonrin, C., Wechayan, C., Loryuenyong, V. (2015). Oyster and pyramidella shells as heterogeneous catalysts for the microwave-assisted biodiesel production from jatropha curcas oil. Journal of Chemistry, 1–7. https://doi.org/10.1155/2015/578625
  • 13. Chemat-Djenni, Z., Hamada, B., Chemat, F. (2007). Atmospheric pressure microwave assisted heterogeneous catalytic reactions. Molecules, 12(7), 1399– 1409. https://doi.org/10.3390/12071399
  • 14. Chen, K. S., Lin, Y. C., Hsu, K. H., Wang, H. K. (2012). Improving biodiesel yields from waste cooking oil by using sodium methoxide and a microwave heating system. Energy, 38(1), 151–156. https://doi.org/10.1016/j.energy.2011.12.020
  • 15. Cholapandian, K., Gurunathan, B., Rajendran, N. (2022). Investigation of CaO nanocatalyst synthesized from Acalypha indica leaves and its application in biodiesel production using waste cooking oil. Fuel, 312, 122958. https://doi.org/10.1016/j.fuel.2021.122958
  • 16. Doyle, A. M., Albayati, T. M., Abbas, A. S., Alismaeel, Z. T. (2016). Biodiesel production by esterification of oleic acid over zeolite Y prepared from kaolin. Renewable Energy, 97, 19–23. https://doi.org/10.1016/j.renene.2016.05.067
  • 17. Ebiura, T., Echizen, T., Ishikawa, A., Murai, K., Baba, T. (2005). Selective transesterification of triolein with methanol to methyl oleate and glycerol using alumina loaded with alkali metal salt as a solid-base catalyst. Applied Catalysis A: General, 283(1–2), 111–116. https://doi.org/10.1016/j.apcata.2004.12.041
  • 18. Erchamo, Y. S., Mamo, T. T., Workneh, G. A., Mekonnen, Y. S. (2021). Improved biodiesel production from waste cooking oil with mixed methanol–ethanol using enhanced eggshell-derived CaO nano-catalyst. Scientific Reports, 11(1), 1–12. https://doi.org/10.1038/s41598-021-86062-z
  • 19. Evangelista, J. P. C., Chellappa, T., Coriolano, A. C. F., Fernandes, V. J., Souza, L. D., Araujo, A. S. (2012). Synthesis of alumina impregnated with potassium iodide catalyst for biodiesel production from rice bran oil. Fuel Processing Technology, 104, 90– 95. https://doi.org/10.1016/j.fuproc.2012.04.028
  • 20. Farooq, M., Ramli, A., Subbarao, D. (2013). Biodiesel production from waste cooking oil using bifunctional heterogeneous solid catalysts. Journal of Cleaner Production, 59, 131–140. https://doi.org/10.1016/j.jclepro.2013.06.015
  • 21. Fatimah, I., Rubiyanto, D., Nugraha, J. (2018). Preparation, characterization, and modelling activity of potassium flouride modified hydrotalcite for microwave assisted biodiesel conversion. Sustainable Chemistry and Pharmacy, 8, 63–70. https://doi.org/10.1016/j.scp.2018.02.004
  • 22. Gnaneswar Gude, V., Patil, P., Martinez-Guerra, E., Deng, S., Nirmalakhandan, N. (2013). Microwave energy potential for biodiesel production. http://www.sustainablechemicalprocesses.com/content/1/5/5
  • 23. Goli, J., Sahu, O. (2018). Development of heterogeneous alkali catalyst from waste chicken eggshell for biodiesel production. Renewable Energy, 128, 142– 154. https://doi.org/10.1016/j.renene.2018.05.048
  • 24. Groisman, Y., Gedanken, A. (2008). Continuous flow, circulating microwave system and its application in nanoparticle fabrication and biodiesel synthesis. The Journal of Physical Chemistry C, 112(24), 8802–8808. https://doi.org/10.1021/jp801409t
  • 25. Hindarso, H., Aylianawati, Sianto, M. E. (2015). Biodiesel production from the microalgae nannochloropsis by microwave using CaO and MgO catalysts. International Journal of Renewable Energy Development, 4(1), 72–76. https://doi.org/10.14710/ ijred.4.1.72-76
  • 26. Hsiao, M. C., Kuo, J. Y., Hsieh, S. A., Hsieh, P. H., Hou, S. S. (2020). Optimized conversion of waste cooking oil to biodiesel using modified calcium oxide as catalyst via a microwave heating system. Fuel, 266(January), 117114. https://doi.org/10.1016/j.fuel.2020.117114
  • 27. Huda, A., M, S. Z., Y, S. B., T, A. S., Mohamed, A., Hazrat, M. A., Rizwanul, F. I. (2023). Biodiesel production from waste cooking oil using KOH / HY-type nano-catalyst derived from silica sand. Biofuels, 0(0), 1–17. https://doi.org/10.1080/17597269.2023.2267849
  • 28. Jurmot, S., Abbas, A. S. (2022). Kinetics and activation complex thermodynamic study of the acidity removal of oleic acid via esterification reaction on commercial 13X zeolite. Iraqi Journal of Chemical and Petroleum Engineering, 23(3), 43–49. https://doi.org/10.31699/ijcpe.2022.3.6
  • 29. Kamaronzaman, M. F. F., Kahar, H., Hassan, N., Hanafi, M. F., Sapawe, N. (2020). Analysis of biodiesel product derived from waste cooking oil using fourier transform infrared spectroscopy. Materials Today: Proceedings, 31, 329–332. https://doi.org/10.1016/j.matpr.2020.06.088
  • 30. Khemthong, P., Luadthong, C., Nualpaeng, W., Changsuwan, P., Tongprem, P., Faungnawakij, K. (2012). Industrial eggshell wastes as the heterogeneous catalysts for microwave-assisted biodiesel production. Catalysis Today, 190(1), 112–116. https://doi.org/10.1016/j.cattod.2011.12.024
  • 31. Mahmood, S. S., Al-Yaqoobi, A. M. (2024). Production of biodiesel by using CaO nano-catalyst synthesis from mango leaves extraction. International Journal of Renewable Energy Development, 13(6), 1025–1034. https://doi.org/10.61435/ijred.2024.60469
  • 32. Mat, R., Samsudin, R. A., Mohamed, M., Johari, A. (2012). Solid catalysts and their application in biodiesel production. 7(2), 142–149. https://doi.org/10.9767/bcrec.7.2.3047.142-149
  • 33. Mathiyazhagan, M., Ganapathi, a. (2011). Factors affecting biodiesel production. Research in Plant Biology, 1(2), 1–5.
  • 34. Mmusi, K. C., Odisitse, S., Nareetsile, F. (2021). Comparison of CaO-NPs and chicken eggshell-derived CaO in the production of biodiesel from Schinziophyton rautanenii (Mongongo) nut oil. Journal of Chemistry, 2021. https://doi.org/10.1155/2021/6663722
  • 35. Mohammed, W. T., Jabbar, M. F. A. (2015). Esterification of free fatty acid with high chain alcohol for biodiesel production using semi-batch reactive distillation. Iraqi Journal of Chemical and Petroleum Engineering, 16(4), 11–19. www.iasj.net
  • 36. Motasemi, F., Ani, F. N. (2012). A review on microwave-assisted production of biodiesel. Renewable and Sustainable Energy Reviews, 16(7), 4719–4733. https://doi.org/10.1016/j.rser.2012.03.069
  • 37. Nakkash, N. B., Al-Karkhi, S. R. (2012). Production of biodiesel fuel from oleic acid and comparison of its properties with petroleum diesel. Iraqi Journal of Chemical and Petroleum Engineering, 13(4), 13–25. www.iasj.net
  • 38. Nodede, N. C. (2016). Continuous microwave-assisted biodiesel production. May.
  • 39. Qiu, F., Li, Y., Yang, D., Li, X., Sun, P. (2011). Biodiesel production from mixed soybean oil and rapeseed oil. Applied Energy, 88(6), 2050–2055. https://doi.org/10.1016/j.apenergy.2010.12.070
  • 40. Rabelo, S. N., Ferraz, V. P., Oliveira, L. S., Franca, A. S. (2015). FTIR analysis for quantification of fatty acid methyl esters in biodiesel produced by microwave-assisted transesterification. International Journal of Environmental Science and Development, 6(12), 964–969. https://doi.org/10.7763/ IJESD.2015.V6.730
  • 41. Refaat, A. A. (2010). Different techniques for the production of biodiesel from waste vegetable oil. International Journal of Environmental Science & Technology, 7(1), 183–213. https://doi.org/10.1007/ BF03326130
  • 42. Rived, F., Canals, I., Bosch, E., Rosés, M. (2001). Acidity in methanol–water. Analytica Chimica Acta, 439(2), 315–333. https://doi.org/10.1016/ S00032670(01)01046-7
  • 43. Saleem, A. G., Al-Jubouri, S. M. (2024). Efficient separation of organic dyes using polyvinylidene fluoride/polyethylene glycol-tin oxide (PVDF/PEG-SnO2) nanoparticles ultrafiltration membrane. Applied Science and Engineering Progress. https://doi.org/10.14416/j.asep.2024.08.001
  • 44. Sharma, A., Kodgire, P., Kachhwaha, S. S. (2019). Biodiesel production from waste cotton-seed cooking oil using microwave-assisted transesterification: Optimization and kinetic modeling. Renewable and Sustainable Energy Reviews, 116(September), 109394. https://doi.org/10.1016/j.rser.2019.109394
  • 45. Tahira, F., Hussain, S. T., Ali, S. D., Iqbal, Z., Ahmad, W. (2012). International Journal of Energy and Power Homogeneous Catalysis of High Free Fatty Acid Waste Cooking Oil to Fatty Acid Methyl Esters (Biodiesel). 1(1), 31–36. www.ijep.org
  • 46. Tariq, M., Ali, S., Ahmad, F., Ahmad, M., Zafar, M., Khalid, N., Khan, M. A. (2011). Identification, FT-IR, NMR (1H and 13C) and GC/MS studies of fatty acid methyl esters in biodiesel from rocket seed oil. Fuel Processing Technology, 92(3), 336–341. https://doi.org/10.1016/j.fuproc.2010.09.025
  • 47. Taylor, M. (2005). Developments in Microwave Chemistry.
  • 48. Tidwell, C. P., Bharara, P., Rudeseal, G., Rudeseal, T., Rudeseal, F. H., Simmer, C. A., McMillan, D., Lanier, K., Fondren, L. D., Folmar, L. L., Belmore, K. (2007). Synthesis and characterization of 5,10,15,20-Tetra[3-(3-trifluoromethyl)phenoxy] porphyrin. Molecules, 12(7), 1389–1398. https:// doi.org/10.3390/12071389
  • 49. Winoto, V. (2019). Optimization of biodiesel production using nanomagnetic CaO-based catalysts with subcritical methanol transesterification of rubber seed oil. https://doi.org/10.3390/en12020230
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d76d0908-75b1-4748-bcd6-e437525dbfae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.