PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Transient velocity and steady state entropy generation in a microfluidic Couette flow containing charged nano particles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An analysis has been provided to determine the transient velocity and steady state entropy generation in a microfluidic Couette flow influenced by electro-kinetic effect of charged nanoparticles. The equation for calculating the Couette flow velocity profile is derived for transient flow. The solutions for momentum and energy equations are used to get the exact solution for the dimensionless velocity ratio and dimensionless entropy generation number. The effects of the dimensionless entropy generation number, Bejan number, irreversibility ratio, entropy generation due to fluid friction and due to heat transfer on dimensionless time, relative channel height, Brinkman number, dimensionless temperature ratio, nanoparticle volume fraction are analyzed.
Rocznik
Strony
787--804
Opis fizyczny
Bibliogr. 15 poz., wykr.
Twórcy
  • Department of Mechanical Engineering, Cleveland State University Cleveland, Ohio-44115, USA
  • Department of Mechanical Engineering, Cleveland State University Cleveland, Ohio-44115, USA
  • Department of Studies and Research in Mathematics, Kuvempu University Shankarghatta 577451, Shimoga, Karnataka, INDIA
Bibliografia
  • [1] Abbassi H. (2007): Entropy generation analysis in a uniformly heated microchannel heat sink. – Energy, vol.32, pp.1932–1947.
  • [2] Bejan A. (1996): Entropy Generation Minimization. – New York: CRC Press.
  • [3] Chen K. (2005): Second law analysis and optimization of microchannel flows subject to different boundary conditions. – Int. J. Energy Res., vol.29, pp.249–263.
  • [4] ChulJin Choi, Seok Pil Jang and Stephen U.S. Choi (2011): Electrokinetic effects of charged nanoparticles in microfluidic Couette flow. – Journal of Colloid and Interface Science, vol.363, pp.59–63.
  • [5] Gorla R.S.R. (2014): Entropy generation in thermally fully developed electro-osmotic flow in circular microtubes. – Int. Jou. Microscale and Nanoscale Thermal and Fluid Transport Phenomena, vol.5, pp.279-296.
  • [6] Groisman A. and Steinberg V. (1998): Mechanism of elastic instability in Couette flow of polymer solutions: Experiment. – Phys. Fluids, vol.10, pp.2451.
  • [7] Guillermo Ibanez A and Sergio Cuevas (2010): Entropy generation minimization of a MHD (magnetohydrodynamic) flow in a microchannel. – Energy, vol.35, pp.4149-4155.
  • [8] Kenney S., Poper K., Chapagain G. and Gordon F.C. (2013): Large Deborah number flows around confined microfluidic cylinders. – Rheol. Acta, vol.52, pp.485–497.
  • [9] Omid Ejtehadi, Javad Abolfazli Esfahani and Ehsan Roohi (2012): Compressibility and rarefaction effects on entropy and entropy generation in micro/nano Couette flow using DSMC. – Journal of Physics: Conference Series, vol.362, pp.012008.
  • [10] Osamah Haddad, Mohammad Abuzaid and Mohammad Al-Nimr (2004): Entropy generation due to laminar incompressible forced convection flow through parallel-plates microchannel. – Entropy, vol.6, No.5, pp.413-426.
  • [11] Pathak J.A., Ross D. and Kalman B. Migler (2004): Elastic flow instability, curved streamlines, and mixing in microfluidic flows. – Phys. Fluids, vol.16, pp.4028.
  • [12] Sheng Chen and Zhiwei Tian (2010): Entropy generation analysis of thermal micro-Couette flows in slip regime. – International Journal of Thermal Sciences, vol.49, pp.2211-2221.
  • [13] Soong C.Y. and Wang S.H. (2003): Theoretical analysis of electrokinetic flow and heat transfer in a microchannel under asymmetric boundary conditions. – Journal of Colloid and Interface Science, vol.265, pp.202–213.
  • [14] Sunday C. Omowunmi and Xue-Feng Yuan (2013): Time-dependent non-linear dynamics of polymer solutions in microfluidic contraction flow – a numerical study on the role of elongational viscosity. – Rheol. Acta, vol.52, pp.337–354.
  • [15] Wasif Ali Zahid, Youbing Yin and Ke-Qin Zhu (2007): Couette–Poiseuille flow of a gas in long microchannels. – Microfluid Nanofluid, vol.3, pp.55–64.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d768cbaf-fee3-4b50-9fe2-5a6989269dac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.