Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Identyfikacja technogennych sytuacji awaryjnych w transporcie kolejowym
Języki publikacji
Abstrakty
The antropogenic load on natural environment is continuously growing. One of important issues is the influence of transport of goods, especially when the cargo is hazardous. Railroad transport in Ukraine shares about 60% of all means of transport so identification of potential emergency situations in this area is an important issue. The article discusses some methodology approaches and describes cluster analysis as a tool for Identification of technogenic emergency situations in railway transport.
Antropogeniczne obciążenie środowiska naturalnego stale rośnie. Jedną z istotnych kwestii jest wpływ transportu towarów, zwłaszcza gdy ładunek jest niebezpieczny. Transport kolejowy na Ukrainie ma około 60% udziału wszystkich środków transportu, więc identyfikacja potencjalnych sytuacji awaryjnych w tej dziedzinie jest ważnym zagadnieniem. W artykule przedstawiono wybrane podejścia metodyczne i opisano analizę skupień jako narzędzie do identyfikacji technogennych sytuacji awaryjnych w transporcie kolejowym.
Wydawca
Czasopismo
Rocznik
Tom
Strony
177--184
Opis fizyczny
Bibliogr. 16 poz., schem., tab., wykr.
Twórcy
autor
- Vinnitsa National Technical University
autor
- Vinnitsa National Technical University
autor
- Kazakh National Technical University
autor
- Lublin University of technology
Bibliografia
- [1] Youkhimchukl S.V., Kazman М.D., Models for the automation in making recommendations to the commander of fire extinguishers on the railroad transport: monograph, UNIVERSUM, Vinnytsia, 2008
- [2] Savchuk Т.O., Petrishyn S.І., Determination of the Euclidean distance between the emergency situations on the railroad transport during claster analisis, Naukovi Pratsi Vinnytskogo Nationalnogo Technichnogo Universitety, 3 (2010), http://www.nbuv.gov.ua/e-journals/vntu/2010_3/2010
- [3] Savchuk Т.O., Petrishyn S.І., Comparative analysis of using clastering methods for the identification of the emergency situations on the railroad transport, Naukovi Pratsi Donetskogo Nationalnogo Technichnogo Universytety, 11(2010), 135-140
- [4] Savchuk Т.O., Petrishyn S.І., Distance and the degree of proximity as the basic characteristics of intellectual analysis of the emergency situations on the railroad transport, Conference proceedings, «INTERNET-EDUCATION-SCIENCE-2010», 7-th international conference ІОН-2010, Vinnytsia, 2010, 258-261
- [5] Savchuk Т.O., Petrishyn S.І., Normalization of the parameters’ values during the cluster analysis of the emergency situations on the railroad transport, Conference proceedings, International conference «Information computer technologies, simulation, control»
- [6] Barsegian А.А., Kuprianov М.S., Stepanenko V.V., Holod I.I., Methods and models for data analysis: OLAP and Data Mining, BHV-Peterburg, 2004
- [7] Savchuk Т.O., Petrishyn S.І., Peculiarities in selecting cluster parameters during the analysis of emergency situations on the railroad transport, Measuring and calculating equipment in technological processes, 2 (2010), 144-149
- [8] Aivazian S.А., Buhstaber V.М., Eniukov I.S., Applied statistics: Classification and decrease in dimensionality, Finances and statistics, Moskva, 1989
- [9] Mandel I.D., Cluster analysis, Finances and statistics, Moskov, 1988
- [10] Savchuk Т.O., Petrishyn S.І., Comparative analysis of using clustering methods for the identification of the emergency situations on the railroad transport, Conference proceedings, System analysis and information technologies SAIT2010, 2010, 485
- [11] Methods for structure analysis. Access mode: www.sati.archaeology.nsc.rustatmethods_info.php
- [12] Petrishyn S.І., Cluster analysis of emergency situations on the railroad transport using distances and degrees of of proximity between such situations, Proceedings of the XL scientific and technical conference, 2011
- [13] Duran B., Odel P., Cluster analysis, Statistika, Moskov, 1977
- [14] Holand S.M., Cluster Analysis, Department of Geology, University of Georgia, GA 30602-2501, 2006
- [15] Nevin L., Zhang Hierarchical Latent Class Models for Cluster Analysis, Journal of Machine Learning Research, 5 (2004), 697-723
- [16] Kormen Т., Leiserson Ch., Rivest R., Stein К., Algorithms: building and analysis, 2-d edition, Printing house «Williams», 2009
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d768a9cd-0808-4e18-96f8-5f4744d127fe