PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Mechanism of micro/nano-bubble formation and cavitation effect on bubbles size distribution in flotation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, micro/nano-bubble generated by cavitation effect as a promoting factor for flotation was investigated using the atomic force microscope (AFM). Hydrodynamic cavitation tests were performed with a venturi bubble generator. Additionally, bubble size distribution (BSD) under the hydrodynamic cavitation effect was also studied at different water flow speed conditions. Dozens of nanometers height bubbles attached to the hydrophobic substrates were detected. Besides, the cavitation cloud grew thicker with the flow velocity increasing from 26.52 m/sec to 53.04 m/sec, near the venturi tube nozzle. All results showed the importance of the cavitation effect on the micro/nano-bubbles formation and the BSD in flotation.
Rocznik
Strony
504--512
Opis fizyczny
Bibliogr. 42 poz., rys., wykr., wz.
Twórcy
autor
  • College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
  • Coal Production Safety Collaborative Innovation Center in Henan Province, Henan Polytechnic University, Jiaozuo 454000, China
autor
  • College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
autor
  • College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
autor
  • College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
Bibliografia
  • AZEVEDO, A., ETCHEPARE, R., CALGAROTO, S., 2016. Aqueous dispersions of nano bubbles: Generation, properties and features. Minerals Engineering, 94(8), 29–37.
  • ASSEMI, S., NALASKOWSKI, J., JOHNSON, W.P., 2006a. Direct force measurements between carboxylate-modified latex microspheres and glass using atomic force microscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 286, 70-77.
  • ASSEMI, S., NALASKOWSKI, J., JOHNSON, W.P., 2006b. Isoelectric point of fluorite by direct force measurements using atomic force microscopy. Langmuir, 22(4), 1403-1405.
  • ASSEMI, S., NGUYEN, A.V., MILLER, J.D., 2008. Direct measurement of particle–bubble interaction forces using atomic force microscopy. International Journal of Mineral Processing, 89, 65-70.
  • AHMED, M.M., 2010. Effect of comminution on particle shape and surface roughness and their relation to flotation process. Int. J. Miner. Process., 94(3), 180-191.
  • BHONDAYI, C., MOYS, M.H., 2014. Measurement of aproxy for froth phase bubble sizes as a function of froth depth in flotation machines Part 1. Theoretical development and testing of a new technique. International Journal of Mineral Processing, 130(7), 8–19.
  • BHATTACHARJEE, S., KO, C.H., ELIMELECH, M., 1998.DLVO interaction between rough surfaces. Langmuir, 14(12), 3365-3375.
  • CHANSON, H., AOKI, S., HOQUE, A., 2004.Physical modeling and similitude of air bubble entrainment at vertical circular plunging jets. Chemical Engineering Science, 59, 747-758.
  • CAO, Y.J., GUI, X.H., MA Z.L., 2009.Process mineralogy of copper-nickel sulphide flotation by a cyclonic-static micro-bubble flotation column. Mining Science and Technology, 19, 0784-0787.
  • DONG, Z.Y., SU, P.L., 2006.Cavitation control by aeration and its compressible characteristics. Journal of Hydrodynamics, 18(4), 99-504.
  • DRESSAIRE, E., BEE, R., BELL, D., LIPS, A., STONE, H., 2008.Interfacial polygonal nano patterning of stable microbubbles. Science, 320, 1198-1201.
  • EMIN, C.C., SEVGI, K., 2015. Effect of nanoparticles on froth stability and bubble size distribution in flotation. International Journal of Mineral Processing, 138, 6-14.
  • FAN, M., TAO, D., HONAKER, R., LUO, Z.,2010a. Micro/nano-nano bubble generation and its application in froth flotation (Part I): Micro/nano-nano bubble generation and its effects on the properties of microbubble and millimeter scale bubble solutions. Mining Science Technology, 20(1), 1-19.
  • FAN, M., TAO, D., HONAKER, R., LUO, Z., 2010b. Micro/nano-nano bubble generation and its application in froth flotation (Part II): Fundamental study and theoretical analysis. Mining Science Technology, 20(2), 159-177.
  • FAN, M., TAO, D., HONAKER, R., LUO Z., 2010c. Micro/nano-nano bubble generation and its application in froth flotation (Part III): Specially designed laboratory scale column flotation of phosphate. Mining Science Technology, 20(3), 317-338.
  • FILIPPOV, L.O., JOUSSEMET, R., HOUOT, R., 2000. Bubble spargers in column flotation adaptation to precipitate flotation. Minerals Engineering, 13(1), 37-51.
  • HENDERSON, R.K., BAKER, A., PARSONS, S.A., JEFFERSON, B., 2008a. Characterization of algogenic organic matter extracted from cyanobacteria green algae and diatoms. Water Research, 42(13), 3435-3445.
  • HENDERSON, R.K., PARSONS, S.A., JEFFERSON, B., 2008b. Successful removal of algae through the control of zeta potential. Separation Science Technology, 43(7), 1653-1666.
  • HENDERSON, R.K., PARSONS, S.A., JEFFERSON, B., 2008c. Surfactants as bubble surface modifiers in the flotation of algae: dissolved air flotation that utilizes a chemically modified bubble surface. Environmental Science and Technology, 42(13), 4883-4888.
  • HANG, J.J., MASSOUD, K., 2014. Heterogeneous bubble nucleation on ideally-smooth horizontal heated surface. International Journal of Heat and Mass Transfer, 71, 149-157.
  • HAMPTON, M.A., NGUYEN, A.V., 2010. Micro/nanobubbles and the micro/nano-nanobubble bridging capillary force. Advances in Colloid Interface Science, 154, 30-55.
  • JAMESON, G.J., NGUYEN, A.V., ATA, S., 2007. The flotation of fine and coarse particles. Froth Flotation a Century of Innovation. SME, pp. 339-372.
  • LI, X.B., XU, H.X., LIU, J.T., ZHANG, J., GUIZ, L., 2016. Cyclonic state micro-bubble flotation column in oil-in-water emulsion separation. Separation and Purification Technology, 165(13), 101-106.
  • LURIE, M., REBHUN, M., 1997. Effect of properties of polyelectrolytes on their interaction with particulates and soluble organics. Water Science Technology, 36, 93-101.
  • LIU, L.T., YAO, X.L., LIU, N.N., YU, F.L., 2017. Toroidal bubble dynamics near a solid wallat different Reynolds number. International Journal of Multiphase Flow, 13(9), 211-220.
  • MILLER, J.D., HU, Y., VEERAMASUNENI, S., LU, Y., 1999. In-situ detection of butane gas at hydrophobic silicon surfaces. Colloids and Surfaces, 154, 137-147.
  • NGUYEN, A.V., PHAN, C.M., EVANS, G.M., 2006. Effect of the bubble size on the dynamic adsorption of frothers and collectors in flotation. International Journal of Mineral Processing, 79, 18-26.
  • OLIVEIRA, C., RUBIO, J., 2011.Zeta potential of single and polymer-coated microbubbles using an adapted micro electrophoresis technique. International Journal of Mineral Processing, 98(12), 118-123.
  • PAUNOV, V.N., BINKS, B.P., ASHBY, N.P., 2002. Adsorption of charged colloid particles to charged liquid surfaces. Langmuir, 18, 6946-6955.
  • SCHUBERT, H., 2005. Micro/nanobubbles, hydrophobic effect, heterocoagulation and hydrodynamics in flotation. International Journal of Mineral Processing, 78, 11-21.
  • TEIXEIRA, M.R., ROSA, M.J., 2006. Comparing dissolved air flotation and conventional sedimentation to remove cyanobacterial cells of Microcystis aeruginosa: Part I: The key operating conditions. Separation Purification Technology, 52(1), 84-94.
  • TAO, D., 2004.Role of bubble size in flotation of coarse and fine particles-a review. Separation Science Technology, 4(39), 741-760.
  • USHIKUBO, F.Y., FURUKAWA, T., NAKAGAWA, R., ENARI, M., MAKINO, Y., KAWAGOE, Y., 2010. Evidence of the existence and the stability of nano-bubbles in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 361, 31-37.
  • VERRELLI, D. I., KOH, P.T.L., NGUYEN, A.V., 2011. Particle-bubble interaction and attachment in flotation. Chemical Engineering Science, 66(23), 5910-5921.
  • XU, M., QUINN, P., STRALLON-CRAWLY, R., 1996. A feed-line aerated flotation column. Part 1: Batch and continuous test work. Mining Engineering, 9(5), 499-508.
  • YOUNT, D.E., 1997.On the elastic properties of the interfaces that stabilize gas cavitation nuclei. Colloid Interface Science, 193, 50-59.
  • YOUNT, D.E., KUNKLE, T.D., 1975. Gas nucleation in the vicinity of solid hydrophobic spheres. Journal of Applied Physics, 46(10), 4484-4486.
  • ZHOU, Z.A., CHOW, R., XU Z.H., MASLIYAH, J.M., ZHOU, Z.A., CHOW, R., XU Z.H., MASLIYAH, J.M., 2008.Spontaneous bubble nucleation on bitumen. In: XXIV International Mineral Processing Congress, Beijing, China, 24-28.
  • ZHOU, Z.A., XU, Z.H., FINCH, J.A., 1996. Effect of gas nuclei on hydrophobic coagulation. Journal of Colloid and Interface Science, 179, 311-314.
  • ZHOU, Z.A., XU, Z.H., FINCH, J.A., 1998. Effect of surface properties of solids on dynamic bubble formation in gas- supersaturated systems. Industrial & Engineering Chemistry Research, 37,1998-2004.
  • ZHOU, Z.A., XU, Z.H., FINCH, J.A., 1999. Generation of small bubbles by hydro dynamic cavitation. Trans. IMM., 108, 55-58.
  • ZHANG, M., SHI, C.S., LIU, J.T., ZHAI, A.F., 2009. A honeycomb-tube packing medium and its application to column flotation. Mining Science and Technology, 19, 775-778.
Uwagi
This work is financed by National Natural Science Foundation of China (51904096). Science and Technology Project of Henan Province (172102310641).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d767ff0d-c77d-49e9-9190-8512f76e78a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.