PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Properties of thin ZnS:Mn films sprayed by improved method: The role of Mn2+ ion concentration

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Undoped and Mn-doped thin ZnS films were deposited on ordinary glass substrates at temperature of 450 °C by an improved spray pyrolysis (ISP) method. The ISP parameters, such as carrier gas flow rate, solution flow rate and substrate temperature, were controlled with accuracy ±0.25 Lpm, ±1 mL/h and ±1 °C, respectively. A pulse-spray mode of the method was used to spray the precursor solution. Thin film samples were prepared for Mn-doping with the concentrations of 0 at.%, 1 at.%, 3 at.%, 6 at.%, 8 at.% and 12 at.% relative to Zn in the spray solution. The Mn-doping concentration dependent chemical composition, surface morphology, and structural, optical and photoluminescence (PL) properties were studied. All the thin films were well adherent, nearly stoichiometric, dense, uniform, and possessed cubic crystal structure with preferential orientation along h〈1 1 1〉 direction. A slight enhancement in structural properties, an increase in band gap, and a decrease in refractive index and dielectric constant with Mn-doping concentration were observed. The PL spectra of Mn-doped thin ZnS films at room temperature exhibited both the 490 nm blue defect-related emission and the 590 nm yellow-orange Mn2+ ion related emission. The observed yellow-orange emission intensity was maximum for 3 at.% of Mn-doping concentration in the spray solution.
Wydawca
Rocznik
Strony
291--302
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
autor
  • Department of Physics, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner-422605, Ahmednagar, Maharashtra, India
autor
  • M.S.G. Arts, Science and Commerce College, Malegaon Camp-423105, Nasik, India
autor
  • K.S.K.W. Arts, Science and Commerce College, CIDCO, Nasik-422008, Maharashtra, India
Bibliografia
  • [1] NAKAMURA S., YAMADA Y., TAGUCHI T., J. Cryst. Growth, 214 (2000), 1091.
  • [2] ELIDRISSI B., ADDOU M., REGRAGUI M., BOUGRINE A., KACHOUANE A., BERNEDE J.C., Mater. Chem. Phys., 68 (2001), 175.
  • [3] QI L., LEE B.I., KIM J.M., JANG J.E., CHOE J.Y., J. Lumin., 104 (2003), 261.
  • [4] WANG Z., DAEMEN L.L., ZHAO Y., ZHA C.S., DOWNS R.T., WANG X., WANG Z.L., Nat. Mater., 4 (2005), 922.
  • [5] FALCONY C., J. Appl. Phys., 72(4) (1992), 1525.
  • [6] BHISE M.D., KATIYAR M., KITAI A.H., J. Appl. Phys., 67 (1990), 1492.
  • [7] ORTIZ A., GARCIA M., SANCHEZ A., FALCONY C., J. Electrochem. Soc., 136 (1989), 1232.
  • [8] FALCONY C., ORTIZ A., DOMINGUEZ J.M., FARIAS M.H., COTA-ARAIZA L., SOTO G., J. Electrochem. Soc., 139 (1992), 273.
  • [9] ROBBINS D.J., DIMARIA D.J., FALCONY C., DONG D.W., J. Appl. Phys., 54 (1983), 4553. [10] TANNAS L.E., Flat Panel Displays and CRTs, Van Nostrand, Reinhold, New York, 1985.
  • [11] HOA T.T.Q., THE N.D., MC VITIE S., NAM N.H., VU L.V., CANH T.D., LONG N.N., Opt. Mater., 33 (2011), 308.
  • [12] TOMOMURA Y., KITAGAWA M., SUZUKI A., NAKAJIMA S., J. Cryst. Growth, 99 (1990), 451.
  • [13] TONOUCHI M., SUN Y., MIYASATO T., SAKAMA H., OHMURA M., Jpn. J. Appl. Phys., 29 (1990), 2453.
  • [14] DEAN P.J., PITT A.D., SKOLNICK M.S., WRIGHT P.J., COCKAYNE B., J. Cryst. Growth, 59 (1982), 301.
  • [15] PORADA Z., SCHABOWSKA-OSIOWSKA E., Thin Solid Films, 145 (1986), 75.
  • [16] LUO P.F., JIANG G., ZHU C., Chinese J. Chem. Phys., 22 (2009), 97.
  • [17] JONES G., WOODS J., J. Lumin., 9 (1974), 389.
  • [18] SASAKURA H., KOBAYASHI H., TANAKA S., MITA J., TANAKA T., NAKAYAMA H., J. Appl. Phys., 52 (1981), 6901.
  • [19] AFIFI H.H., MAHMOUD S.A., ASHOUR A., Thin Solid Films, 263 (1995), 248.
  • [20] ZAWARE R.V., WAGH B.G., Mater. Sci.-Poland, 32 (3) (2014), 375.
  • [21] ZAWARE R.V., WAGH B.G., Arab. J. Sci. Eng., 40 (7) (2015), 2049.
  • [22] PEACOCK J.C., PEACOCK B.L.DEG., J. Pharm. Sci.- US, 7 (1918), 689.
  • [23] LOPEZ M.C., ESPINOS J.P., MARTIN F., LEINEN D., RAMOS-BARRADO J.S., J. Cryst. Growth, 285 (2005), 66.
  • [24] BOUBAKER K., CHAOUACHI A., AMLOUK M., BOUZOUITA H., Eur. Phys. J. Appl. Phys., 37 (2007), 105.
  • [25] CULLITY B.D., STOCK S.R., Elements of X-ray diffraction, Prentice Hall, India, 2001.
  • [26] MURALI K.R., KUMARESAN S., Chalcogenide Lett., 6 (2009), 17.
  • [27] VELUMANI S., MATHEW X., SEBASTIAN P.J., Sol. Energ. Mat. Sol. C., 76 (2003), 359.
  • [28] ILICAN S., CAGLAR Y., CAGLAR M., J. Optoelectron. Adv. M., 10 (2008), 2578.
  • [29] SHINDE M.S., AHIRRAO P.B., PATIL R.S., Arch. Appl. Sci. Res., 3 (2011), 311.
  • [30] GOSWAMI A., Thin Film Fundamentals, New Age International Ltd., India, 2008.
  • [31] JOHNSTON D.A., CARLETTO M.H., REDDY K.T.R., FORBES I., MILES R.W., Thin Solid Films, 403 (2002), 102.
  • [32] LUO P.F., JIANG G., ZHU C., Chinese J. Chem. Phys., 22 (2009), 97.
  • [33] LI Z.Q., SHI J.H., LIU Q.Q., WANG Z.A., SUN Z., HUANG S.M., Appl. Surf. Sci., 257 (2010), 122
  • [34] RAVIPRAKASH Y., BANGERA K.V., SHIVKUMAR G.K., Sol. Energy, 83 (2009), 1645.
  • [35] FALCONY C., GARCIA M., ORTIZ A., ALONSO J.C., J. Appl. Phys., 72 (1992), 1525.
  • [36] COTTRELL A., An Introduction to Metallurgy, University Press, Hyderabad, India, 2000.
  • [37] BOUROUSHIAN M., LOIZOS Z., SPYRELLIS N., MOURIN G., Appl. Surf. Sci., 115 (1997), 103.
  • [38] BISWAS S., KAR S., Nanotechnology, 19 (2008), 45710.
  • [39] SAPRA S., NANDA J., ANAND A., BHAT S.V., SARMA D.D., J. Nanosci. Nanotechno., 3 (2003), 392.
  • [40] TAYLOR G.I., P. Roy. Soc. A-Math. Phy., 145 (1934), 362.
  • [41] XUANZHI W., Sol. Energy, 77 (2004), 803.
  • [42] JIANFENY C., YALING L., YUHONG W., JIMMY Y., DAPENG C., Mater. Res. Bull., 39 (2004), 185.
  • [43] GENG B.Y., LIU X.W., DU Q.B., WEI X.W., ZHANG L.D., Appl. Phys. Lett., 88 (2006), 163104.
  • [44] LEVY L., HOCHEPIED J.F., PILENI M.P., J. Phys. Chem., 100 (1996), 18322.
  • [45] MOTE V.D., PURUSHOTHAM Y., DOLE B.N., Ceramica, 59 (2013), 614.
  • [46] BRIELER F.J., FROBA M., CHEM L., KLAR P.J., HEIMBRODT W., KRUG H.A., NIDDA V., LOIDL A., Chem. Eur. J., 81 (2002), 185.
  • [47] DRIGGERS R.G. (Ed.), Encyclopedia of Optical Engineering, Vol. 3, CRC Press, India, 2003.
  • [48] MENDOZA-GALVAN A., TREJO-CRUZ C., LEE J., BHATTACHARYYA D., METSON J.B., EVANS P.J., PAL U., J. Appl. Phys., 99 (2006), 1.
  • [49] KAR S., CHAUDHURI S., J. Phys. Chem. B, 109 (2005), 3298.
  • [50] ODA S., KUKIMOTO H., J. Lumin., 18 - 19 (1979), 829.
  • [51] SAMELSON H., LEMPICKI A., Phys. Review, 125 (1962), 901.
  • [52] BHARGAVA R.N., GALLAGHER D., HONG X., NURMIKKO A., Phys. Rev. Lett., 72 (1994), 311.
  • [53] LU H.Y., CHU S.Y., TAN S.S., Jpn. J. Appl. Phys., 44 (7A) (2005), 5282.
  • [54] WARREN A.J., THOMAS C.B., STEWENS P.R.C., J. Phys. D Appl. Phys., 16 (1983), 225.
  • [55] SUYVER J.F., WUISTER S.F., KELLY J.J., MEIJERINK A., Nano Lett., 1 (2001), 429.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7679c54-7f37-4582-97c0-abb7b24c8843
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.