PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Mechanical Properties on Wear Resistance of Si3 N4 – SiC Ceramic Composite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of mechanical properties on wear resistance of Si3 N4 – SiC composite materials with different portions of SiC strengthening phase was investigated. Properties of monolithic silicon nitride were compared to ceramic composites consisting of Si3 N4 matrix with 10 and 20 vol.% SiC. The SiC strengthening phase had a positive effect on the hardness of Si3 N4 – SiC ceramic composite materials. Wear resistance of tested ceramic materials was mainly influenced by their fracture toughness. The highest wear resistance value was achieved for material with the highest fracture toughness. Worn surfaces of all experimental ceramic materials were damaged by both microcutting and microcracking mechanism. Microcracking was the predominant wear mechanism mainly at ceramic composites. The wear resistance of SiC-Si3 N4 ceramic composites can be described by the model W ~ HV/KIC.
Twórcy
  • Institute of Technologies and Materials, Faculty of Mechanical Engineering, STU Bratislava, Námestie Slobody 17, 812 31 Bratislava, Slovak Republic
autor
  • Institute of Technologies and Materials, Faculty of Mechanical Engineering, STU Bratislava, Námestie Slobody 17, 812 31 Bratislava, Slovak Republic
  • Institute of Technologies and Materials, Faculty of Mechanical Engineering, STU Bratislava, Námestie Slobody 17, 812 31 Bratislava, Slovak Republic
Bibliografia
  • 1. Krstic, Z., Krstic, V.D. Silicon nitride: the engineering material of the future. J Mater Sci 47, 2012, 535–552.
  • 2. Carrasquero, E., Bellosi, A., Staia, M.H. Characterization and wear behavior of modified silicon nitride. International Journal of Refractory Metals & Hard Materials, 23, 2005, 391–397.
  • 3. Khadera, I., Renz, A., Kailer, A. A wear model for silicon nitride in dry sliding contact against a nickel-base alloy. Wear, 2017, 376–37 (A), 352 – 362.
  • 4. Švec, P., Gábrišová, Z., Brusilová, A., Čaplovič, Ľ. Boron carbide based ceramic composites hot pressed with aluminium additive. Acta Metallurgica Slovaca, 26(2), 2020, 67–69.
  • 5. Švec, P., Gábrišová, Z., Brusilová. A. Microstructure and mechanical properties of B4C-TiB2 ceramic composites hot pressed with in-situ reaction. Journal of Ceramic Processing Research. Vol. 20(1), 2019, 113–120.
  • 6. Chen, W. Microstructure, mechanical properties and friction/wear behavior of hot-pressed Si3 N4/ BN ceramic composites. Ceramics-silikaty, 63(1), 2019, 1–10.
  • 7. Kumar, A., Ghosh, S., Aravindan, S. Grinding performance improvement of silicon nitride ceramics by utilizing nanofluids, Ceramics International, 43, 2017,13411–13421.
  • 8. Zhao B., Liu H., Huang C., Wang J., Cheng M. Theoretical hardness analysis and experimental verification for composite ceramic tool materials. Ceramic International, 43, 2017, 15580 15585.
  • 9. Gábrišová, Z., Brusilová, A., Švec, P. The Effect of Sintering Time on Wear Resistance of Silicon Nitride. Advances in Science and Technology Research Journal, 14(2), 2020, 145–154.
  • 10. Han, W., Li, Y., Chen, G., Yang, Q. Effect of sintering additive composition on microstructure and mechanical properties of silicon nitride. Materials Science and Engineering: A, 700, 2017, 19–24.
  • 11. Kovalčíková A., Balko J., Balázsi C., Hvizdoš P., Dusza J. Influence of hBN content on mechanical and tribological properties of Si3N4/hBN ceramic composites. Journal of the European Ceramic Society, 34(14), 2014, 3319- 3328.
  • 12. Rabinowicz, E. Friction and wear of materials. Second Edition, John Wiley & Sons, 1995.
  • 13. Krageľskij, I.V., Dobychin, M.N., Kombalov, V.S. Friction and wear, Calculation Methods. Oxford: Pergamon Press, 1982
  • 14. Popov, V.L. Adhesive wear: Generalized Rabinowicz criteria, Facta Univ. – Ser. Mech. Eng., 6, 2018, 29–39.
  • 15. Rickhey, F., Marimuthu, K.P., Lee, H. Investigation on indentation cracking-based approaches for residual stress evaluation. Materials, 10 (4), 2017, 1–16.
  • 16. Lee, J.H., Gao, Y.F., Johanns, K.E., Pharr, G.M. Cohesive interface simulations of indentation cracking as a fracture toughness measurement method for brittle materials. Acta Mater, 60, 2012, 5448–5467.
  • 17. Bocanegra – Bernal, M. H., Matovic, B. Dense and near-net shape fabrication of Si3N4 ceramics. In: Mat. Sci. Eng. A, 500, 2009, 130–149.
  • 18. Švec, P., Brusilová, A. Tribologické vlastnosti nitridu kremíka. Bratislava: Nakladateľstvo STU, 2011.
  • 19. Gábrišová, Z., Brusilová, A., Švec, P. Study of sintering parameters and sintering additives effect on selected properties of silicon nitride. Manufacturing technology, 19 (2), 2019, 222–227.
  • 20. Naslain, R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors. Composites Science and Technology, 64, 2004, 155–170.
  • 21. Chen,W., Wang, K., Gao, Y, Hea, N., Xina, H., Li, H. Investigation of tribological properties of silicon nitride ceramic composites sliding against titanium alloy under artificial seawater lubricating condition. International Journal of Refractory Metals and Hard Materials, 76, 2018, 204–213.
  • 22. Chen, W., Zhang, D., Ai, X., Lv, Z.L., Liu, Q., J. Preparation of Si3N4-hBN ceramics by constant pressure, hot pressing and friction behavior analysis. J.Shaanxi Univ. Sci., 34 (5), 2016, 69–76.
  • 23. Ge, P., Sun, K., Li, A., Pingji, G. Improving the electrical and microwave absorbing properties of Si3N4 ceramics with carbon nanotubefibers. Ceramics International, 44, 2018, 2727–2731.
  • 24. Kovalčíková, A., Balázsi, Cs., Dusza, J., Tapasztó, O. Mechanical properties and electrical conductivity in a carbon nanotube reinforced silicon nitride composite. Ceramics International, 38 (1), 2012, 527–533.
  • 25. Pędzich, Z., Grabowski, G., Saferna, I., Ziąbka, M. , Gubernat, A. , Szczerba, J. , Bućko, M., Kot, M. The Abrasive Wear of Non-Oxide Structural Ceramics in Wet Environment. Journal of Materials Science and Chemical Engineering, 2, 2014, 9–15.
  • 26. Grabowski, G., Pędzich, Z. Residual Stresses in Particulate Composites with Alumina and Zirconia Matrices. Journal of the European Ceramic Society, 27, 2007, 1287–1292.
  • 27. Grabowski, G., Stobierski, L. Influence of Thermal Stresses on Mechanical Properties of Ceramics Particulate Composites. Ceramika/Ceramics, 91, 2005, 627–634.
  • 28.Jiao, S., Jenkins, M.L.L., Davidge, R.W.W. Interfacial Fracture Energy-Mechanical Behaviour Relationshipin Al2O3/SiC and Al2O3/TiN Nanocomposites. Acta Materialia, 45, 1997, 149–156.
  • 29. Ohji, T., Jeong, Y.K., Choa, Y.-H., Niihara, K. Strengthening and Toughening Mechanisms of Ceramic Nanocomposites. Journal of the American Ceramic Society, 60, 1998, 1453–1460.
  • 30. Hwang, K., Kim, CH., Auh, K., Cheong, D., Niihara, K. Influence of SiC Particle Size and Drying Method on Mechanical Properties and Microstructure of Si3N4/SiC Nanocomposite. Materials Letters, 32, 1997, 251–257.
  • 31. Sasaki, G., Nakasake, H., Suganuma, K., Fujita, T., Niihara, K. Mechanicial Properties and Microstructure of Si3N4 Matrix Composite with Nanometer Scale SiC Particles. Journal of the Ceram. Society of Japan, 100, 1992, 536–540.
  • 32. Long, M., Li, Y., Qin, H., Xue, W., Chen, J., Sun, J., Kumar, R.V. Formation mechanism of Si3N4 in reaction-bonded Si3N4-SiC composites. Ceramics International, 42 (15), 2016, 16448–16452.
  • 33. Wu, J., Zhang, Y., Xu, X., Lao, X., Li, K., Xu, X. Fabrication and properties of in-situ mullite-bonded Si3N4/SiC composites for solar heat absorber. Materials Science and Engineering: A, 652, 2016, 271–278.
  • 34. Gábrišová, Z., Brusilová, A., Švec, P. Study of Sintering Parameters and Sintering Additives Effect on selected properties of Silicon Nitride. Manufacturing Technology, 2019, vol. 19 (2), 222–227.
  • 35. Tatarko, P., Kašiarová, M., Dusza, J., Morgiel, J., Šajgalík, P., Hvizdoš, P. Wear resistance of hotpressed Si3N4/SiC micro/nanocomposites sintered with rare-earth oxide additives, Wear, Volume 269 (11–12), 2010, 867–874.
  • 36. Hvizdoš P., Dusza J., Balázsi C. Tribological properties of Si3N4-graphene nanocomposites. Journal of European Ceramic Society, 33(12), 2013, 2359–2364.
  • 37. Gomes, J.R., Osendi, M.I., Miranzo, P., Oliveira, F.J., Silva, R.F. Tribological characteristics of selfmated couples of Si3N4 –SiC composites in the range 22–700°C. Wear 233–235, 1999, 222–228.
  • 38. Shetty, D. K., Wright, I.G, Mincer, P.N. et al. Indentation fracture of WC-Co cermets. J. Mater. Sci., 20, 1985, 1873–1882.
  • 39. Hirano, T., Niihara, K. Microstructure and mechanical properties of Si3N4/SiC composites. Materials Letters 22, 1995, 249–254.
  • 40. Qin, Q., Ye, J. Toughening Mechanisms in Composite Materials, Woodhead Publishing, 2015, 416
  • 41. Kalantar, M., Fantozzi, G. Thermo-mechanical properties of ceramics: Resistance to initiation and propagation of crack in high temperature. Materials Science and Engineering A, 472, 2008, 273–280.
  • 42. Kodama, H., Suzuki, T., Sakamoto, H., Miyoshi, T. Toughening of Silicon Nitride Matrix Composites by the Addition of Both Silicon Carbide Whiskers and Silicon Carbide Particles. Journal of the American Ceramic Society, 73, 1990, 678–683.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7670141-0d99-4ea9-b067-967734f63991
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.