PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The impact of the geographical environment on the hydromorphological conditions of watercourses in southern Poland

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hydromorphological assessment of watercourses provides much valuable information about the riverbed and its immediate surroundings, including the influence of geographical environmental factors along with anthropogenic pressures in the catchment area. This paper presents diversity of hydromorphological conditions of 77 sections located on 39 watercourses in southern Poland in three European ecoregions: Eastern Plains, Central Plains and the Carpathians. The study was based on the Hydromorphological Index for Rivers (HIR) method and two sub-indices: Hydromorphological Diversity Score (HDS) and Hydromorphological Modification Score (HMS). Basic and multi-dimensional statistical analyses were performed to identify the main gradients of the geographical environment and the variables that contribute most to the total variability of HIR. The highest mean HIR values were recorded in the Carpathians ecoregion, then in the Central Plains and the lowest in the Eastern Plains, 0.70, 0.67 and 0.58, respectively. Significant differences were found between the Carpathians and Eastern Plains ecoregions in HIR values obtained. Hydromorphological differentiation is most influenced by altitude and geological type. The cluster analysis enabled two main groups of watercourses to be distinguished – the first one was dominated by variables showing HMS > HDS relationship, while the second one was dominated by HDS > HMS relationship. Multi-dimensional analysis provided additional information on the relationships between the variables and the sections studied. The greatest positive impact on the formation of the final HIR value had the variation of the riverbed slope and natural morphological elements of the bed bottom, while the greatest negative impact on HIR had the transformations observed in spot-check.
Wydawca
Rocznik
Strony
93--112
Opis fizyczny
Bibliogr. [54] poz., rys., tab., wykr.
Twórcy
autor
  • University of Agriculture in Krakow, Faculty of Environmental Engineering and Land Surveying, Department of Land Reclamation and Environmental Development, Krakow, Poland
Bibliografia
  • Abbas M., Zhao L. & Wang Y., 2022. Perspective impact on water environment and hydrological regime owing to climate change: A review. Hydrology, 9(11), 203. https://doi.org/10.3390/hydrology9110203.
  • Akstinas V., Kriščiūnas A., Šidlauskas A., Čalnerytė D., Meilutytė-Lukauskienė D., Jakimavičius D., Fyleris T., Nazarenko S. & Barauskas R., 2022. Determination of river hydromorphological features in low-land rivers from aerial imagery and direct measurements using machine learning algorithms. Water, 14(24), 4114. https://doi.org/10.3390/w14244114.
  • Aleksandrowski P. & Mazur S., 2017. O nowych rozwiązaniach tektonicznych w „Atlasie geologicznym Polski”. Przegląd Geologiczny, 65(12), 1499–1510.
  • Aspinall R. & Pearson D., 2000. Integrated geographical assessment of environmental condition in water catchments: Linking landscape ecology, environmental modelling and GIS. Journal of Environmental Management, 59(4), 299–319. https://doi.org/10.1006/jema.2000.0372.
  • Belletti B., Rinaldi M., Buijse A.D., Gurnell A.M. & Mosselman E., 2015. A review of assessment methods for river hydromorphology. Environmental Earth Sciences, 73, 2078–2100. https://doi.org/10.1007/s12665-014-3558-1.
  • Borek Ł., 2023. Hydromorphological index for rivers as an indicator of land use impact on watercourses in southern Poland. Journal of Hydrology: Regional Studies, 50, 101546. https://doi.org/10.1016/j.ejrh.2023.101546.
  • Denic M., Kuehneweg M. & Schmidt T., 2023. Hydromorphological preferences of freshwater pearl mussel (Margaritifera margaritifera) in upland streams of the Bavarian Forest – A case study. Limnologica, 98, 126034. https://doi.org/10.1016/j.limno.2022.126034.
  • Directive 2000/60/EC. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. OJ L 327, 22.12.2000. http://data.europa.eu/eli/dir/2000/60/2014-11-20.
  • Dresti C., Becciu G. Saidi H. & Ciampittiello M., 2016. The hydromorphological state in mountain rivers subject to human impacts: A case study in the North-West of Italy. Environmental Earth Sciences, 75, 495. https://doi.org/10.1007/s12665-015-5102-3.
  • El Hourani M., Härtling J. & Broll G., 2022. Hydromorphological assessment as a tool for river basin management: Problems with the German Field Survey Method at the transition of two ecoregions. Hydrology, 9(7), 120. https://doi.org/10.3390/hydrology9070120.
  • European Environment Agency (EEA), 2012. Ecoregions for rivers and lakes. https://www.eea.europa.eu/data-and-maps/figures/ecoregions-for-rivers-and-lakes [access: 13.01.2023].
  • European Environment Agency (EEA), 2000. CORINE land cover technical guide –Addendum 2000. https://www.eea.europa.eu/publications/tech40add [access: 13.01.2023].
  • Feio M.J., Aguiar F.C., Almeida S.F.P., Ferreira J., Ferreira M.T., Elias C., Serra S.R.Q., Buffagni A., Cambra J., Chauvin C., Delmas F., Dörflinger G., Erba S., Flor N., Ferréol M., Germ M., Mancini L., Manolaki P., Marcheggiani S., Minciardi M.R., …, Vieira C., 2014. Least disturbed condition for European Mediterranean rivers. Science of the Total Environment, 476–477, 745–756. https://doi.org/10.1016/j.scitotenv.2013.05.056.
  • Feld C.K., de Bello F. & Dolédec S., 2014. Biodiversity of traits and species both show weak responses to hydromorphological alteration in lowland river macroinvertebrates. Freshwater biology, 59(2), 233–248. https://doi.org/10.1111/fwb.12260.
  • Garbowski T., Brysiewicz A., Nosek J., Bar-Michalczyk D. & Czerniejewski P., 2023. An analysis of Hydromorphological Index for Rivers (HIR) model components, based on a hydromorphological assessment of watercourses in the Central European Plain. Environmental Management, 72(2), 437–455. https://doi.org/10.1007/s00267-022-01778-6.
  • Gecheva G., Pall K., Todorov M., Traykov I., Gribacheva N., Stankova S. & Birk S., 2021. Anthropogenic stressors in upland rivers: Aquatic macrophyte responses. A case study from Bulgaria. Plants, 10(12), 2708. https://doi.org/10.3390/plants10122708.
  • Geoportal GUGiK. 2022. Head Office of Geodesy and Cartography, Geoportal. https://www.geoportal.gov.pl/en/ [access: 13.01.2023].
  • Graniczny M., 2006. Exogenic Geological Processes as a Landform-Shaping Factor. [in:] Zektser I.S., Marker B., Ridgway J., Rogachevskaya L. & Vartanyan G. (eds.), Geology and Ecosystems, Springer, Boston, MA, 171–181. https://doi.org/10.1007/0-387-29293-4_14.
  • Guareschi S., Laini A., Racchetti E., Bo T., Fenoglio S. & Bartoli M., 2014. How do hydromorphological constraints and regulated flows govern macroinvertebrate communities along an entire lowland river? Ecohydrology, 7(2), 366–377. https://doi.org/10.1002/eco.1354.
  • Gündüz O. & Şimşek C., 2021. Assessment of river alteration using a new hydromorphological index. Environmental Monitoring and Assessment, 193(4), 226. https://doi.org/10.1007/s10661-021-09018-w.
  • Hajdukiewicz H. & Wyżga B., 2019. Aerial photo-based analysis of the hydromorphological changes of a mountain river over the last six decades: The Czarny Dunajec, Polish Carpathians. Science of the Total Environment, 648, 1598–1613. https://doi.org/10.1016/j.scitotenv.2018.08.234.
  • Hajdukiewicz H., Wyżga B. & Zawiejska J., 2019. Twentieth-century hydromorphological degradation of Polish Carpathian rivers. Quaternary International, 504, 181–194. https://doi.org/10.1016/j.quaint.2017.12.011.
  • Halabowski D. & Lewin I., 2020. Impact of anthropogenic transformations on the vegetation of selected abiotic types of rivers in two ecoregions (Southern Poland). Knowledge and Management of Aquatic Ecosystems, 421, 35. https://doi.org/10.1051/kmae/2020026.
  • Hydroportal ISOK, 2015. Państwowe Gospodarstwo Wodne Wody Polskie, Informatyczny System Osłony Kraju – Hydroportal. https://wody.isok.gov.pl/imap_kzgw/ [access: 22.11.2022].
  • Illies J. & Botosaneanu L., 1963. Problémes et méthodes de la classification et de la zonation écologique des eaux courantes. considérées surtout du point de vue faunistique. Internationale Vereinigung für Theoretische und Angewandte Limnologie: Mitteilungen, 12(1), 1–57. https://doi.org/10.1080/05384680.1963.11903811.
  • Kałuża T., Sojka M., Wróżyński R., Jaskuła J., Zaborowski S. & Hämmerling M., 2020. Modeling of river channel shading as a factor for changes in hydromorphological conditions of small lowland rivers. Water, 12(2), 527. https://doi.org/10.3390/w12020527.
  • Knehtl M., Podgornik S. & Urbanič G., 2021. Scale-depended effects of hydromorphology and riparian land-use on benthic invertebrates and fish: Implications for large river management. Hydrobiologia, 848, 3447–3467. https://doi.org/10.1007/s10750-021-04589-8.
  • Krueger C.C. & Waters T.F., 1983. Annual production of macroinvertebrates in three streams of different water quality. Ecology, 64(4), 840–850. https://doi.org/10.2307/1937207.
  • Kujanová K., Matoušková M. & Hošek Z., 2018. The relationship between river types and land cover in riparian zones. Limnologica, 71, 29–43. https://doi.org/10.1016/j.limno.2018.05.002.
  • Kupiec J.M., Staniszewski R. & Jusik S., 2021. Assessment of the impact of land use in an agricultural catchment area on water quality of lowland rivers. PeerJ, 9:e10564. https://doi.org/10.7717/peerj.10564.
  • Licciardello F., Barbagallo S., Muratore S.M., Toscano A., Giuffrida E.R. & Cirelli G.L., 2021. Hydro-morphological assessment of Dittaino River, Eastern Sicily, Italy. Water, 13(18), 2499. https://doi.org/10.3390/w13182499.
  • Maaß A.L., Schüttrumpf H. & Lehmkuhl F., 2021. Human impact on fluvial systems in Europe with special regard to today’s river restorations. Environmental Sciences Europe, 33, 119. https://doi.org/10.1186/s12302-021-00561-4.
  • Misztal M., 2018. Jeden obraz bywa wart więcej niż tysiąc słów, czyli o korzyściach z wizualizacji wyników liniowych metod ordynacyjnych. [in:] Wątroba J. (red.), Zastosowania statystyki i data mining w badaniach naukowych, StatSoft Polska, Kraków, 21–24.
  • MPHP, 2021. Mapa Podziału Hydrograficznego Polski w skali 1:10 000 (MPHP10k) [Hydrographic Division Map of Poland 1:10 000]. https://dane.gov.pl/pl/dataset/2167,mapa-podzialu-hydrograficznego-polski-w-skali-110 [access: 22.11.2022].
  • Müller H., Hörbinger S., Franta F., Mendes A., Li J., Cao P., Baoligao B., Xu F. & Rauch H.P., 2022. Hydromorphological assessment as the basis for ecosystem restoration in the Nanxi River Basin (China). Land, 11, 193. https://doi.org/10.3390/land11020193.
  • Munné A. & Prat N., 2004. Defining river types in a Mediterranean Area: A methodology for the implementation of the EU Water Framework Directive. Environmental Management, 34(5), 711–729. https://doi.org/10.1007/s00267-003-0098-y.
  • Nawieśniak M., 2018. Hydromorphological and landscape assessment of the Białka river valley. Acta Scientiarum Polonorum. Formatio Circumiectus, 17(2), 3–11. https://doi.org/10.15576/ASP.FC/2018.17.2.3.
  • Papadaki C., Soulis K., Ntoanidis L., Zogaris S., Dercas N. & Dimitriou E., 2017. Comparative assessment of environmental flow estimation methods in a Mediterranean mountain river. Environmental Management, 60(2), 280–292. https://doi.org/10.1007/s00267-017-0878-4.
  • Pavlek K., Plantak M., Martinić I., Vinković K., Vučković I. & Čanjevac I., 2023. Methodological framework for assessing hydromorphological conditions of heavily modified and artificial river water bodies in Croatia. Water, 15(6), 1113. https://doi.org/10.3390/w15061113.
  • PIG-PIB, 2022. Mapa geologiczna Polski 1:500 000 [Geological Map of Poland 1:500 000]. Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa. https://dane.gov.pl/pl/dataset/1574,szczegoowa-mapa-geologiczna-polski-w-skali-150-000-smgp/resource/39373/table [access: 31.01.2024].
  • Rawer-Jost C., Zenker A. & Böhmer J., 2004. Reference conditions of German stream types analysed and revised with macroinvertebrate fauna. Limnologica, 34(4), 390–397. https://doi.org/10.1016/S0075-9511(04)80008-2.
  • Rinaldi M., Gurnell A.M., del Tánago M.G., Bussettini M. & Hendriks D., 2016. Classification of river morphology and hydrology to support management and restoration. Aquatic Sciences: Research Across Boundaries, 78, 17–33. https://doi.org/10.1007/s00027-015-0438-z
  • Rozporządzenie, 2021. Rozporządzenie Ministra Infrastruktury z dnia 25 czerwca 2021 r. w sprawie klasyfikacji stanu ekologicznego, potencjału ekologicznego i stanu chemicznego oraz sposobu klasyfikacji stanu jednolitych części wód powierzchniowych, a także środowiskowych norm jakości dla substancji priorytetowych [Regulation of the Minister of Infrastructure of 25 June 2021 on the classification of ecological status, ecological potential, chemical status and the method of classifying the status of surface water bodies as well as environmental quality standards for priority substances]. Dz.U. 2021 poz. 1475. https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20210001475/O/D20211475.pdf [access: 13.01.2023].
  • Sánchez-Montoya M. del Mar, Puntí T., Suárez M.L., Vidal-Abarca M. del Rosario, Rieradevall M., Poquet J.M., Zamora-Muñoz C., Robles S., Álvarez M., Alba-Tercedor J., Toro M., Pujante A.M., Munné A. & Prat N., 2007. Concordance between ecotypes and macroinvertebrate assemblages in Mediterranean streams. Freshwater Biology, 52(11), 2240–2255. https://doi.org/10.1111/j.1365-2427.2007.01826.x.
  • Sługocki Ł., Czerniawski R., Kowalska-Góralska M. & Teixeira C.A., 2021. Hydro-modifications matter: Influence of vale transformation on microinvertebrate communities (Rotifera, Cladocera, and Copepoda) of upland rivers. Ecological Indicators, 122, 107259. https://doi.org/10.1016/j.ecolind.2020.107259.
  • StatSoft, Inc., 2023. STATISTICA (data analysis software system), version 13.3. www.statsoft.com.
  • Szoszkiewicz K., Jusik S., Adynkiewicz-Piragas M., Gebler D., Achtenberg K., Radecki-Pawlik A., Okruszko T., Gielczewski M., Pietruczuk K., Przesmycki M. & Nawrocki P., 2017. Podręcznik oceny wód płynących w oparciu o hydromorfologiczny indeks rzeczny. Biblioteka Monitoringu Środowiska, Główny Inspektorat Ochrony Środowiska, Warszawa.
  • Szoszkiewicz K., Jusik S., Gebler D., Achtenberg K., Adynkiewicz-Piragas M., Radecki-Pawlik A., Okruszko T., Pietruczuk K., Przesmycki M. & Nawrocki P., 2020. Hydromorphological Index for Rivers: A new method for hydromorphological assessment and classification for flowing waters in Poland. Journal of Ecological Engineering, 21(8), 261–271. https://doi.org/10.12911/22998993/126879.
  • Turunen J., Elbrecht V., Steinke D. & Aroviita J., 2021. Riparian forests can mitigate warming and ecological degradation of agricultural headwater streams. Freshwater Biology, 66(4), 785–798. https://doi.org/10.1111/fwb.13678.
  • Vilenica M., Vidaković Maoduš I. & Mihaljević Z., 2022. The impact of hydromorphological alterations on mayfly assemblages of a mid-sized lowland river in south-eastern Europe. Insects, 13(5), 436. https://doi.org/10.3390/insects13050436.
  • Villeneuve B., Piffady J., Valette L., Souchon Y. & Usseglio-Polatera P., 2018. Direct and indirect effects of multiple stressors on stream invertebrates across watershed. reach and site scales: A structural equation modelling better informing on hydromorphological impacts. Science of the Total Environment, 612, 660–671. https://doi.org/10.1016/j.scitotenv.2017.08.197.
  • Wiatkowski M. & Tomczyk P., 2018. Comparative assessment of the hydromorphological status of the rivers Odra, Bystrzyca, and Ślęza using the RHS, LAWA, QBR, and HEM methods above and below the hydropower plants. Water, 10(7), 855. https://doi.org/10.3390/w10070855.
  • Wilding L.P. & Drees L.R., 1983. Spatial variability and pedology. [in:] Wilding L.P., Smeck N.E., Hall G.F. (eds.), Pedogenesis and Soil Taxonomy: 1. Concepts and Interactions, Developments in Soil Science, 11(A), Elsevier, Amsterdam, 83–116. https://doi.org/10.1016/S0166-2481(08)70599-3.
  • Zogaris S. & Economou A.N., 2017. The Biogeographic Characteristics of the River Basins of Greece. [in:] Skoulikidis N., Dimitriou E., Karaouzas I. (eds.), The Rivers of Greece, The Handbook of Environmental Chemistry, 59, Springer, Berlin, Heidelberg, 53–59. https://doi.org/10.1007/698_2017_475.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d764a729-2e8a-40db-9b8d-7e26ca837106
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.