PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Carbon Sequestration in Soil as a Sustainable Way of Greenhouse Effect Mitigation

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Sekwestracja węgla w glebie jako zrównoważona metoda ograniczania efektu cieplarnianego
Języki publikacji
EN
Abstrakty
EN
Due to natural mechanisms of transformation the carbon compounds contained in the atmosphere into the humus, soil is an important factor controlling the concentration of atmospheric CO2. The mass of carbon contained in organic matter accumulated in the surface layer of the Earth’s crust is greater than the mass of this element in the atmosphere or biomass of all the organisms living over the globe. Over the recent years, much attention has been paid to the role of soils in limiting the reasons of climate changes, considering the possibility of increasing carbon sequestration in this matrix. This way of approaching the problem of the greenhouse effect, which does not require an involvement of complex and expensive technological solutions aimed at capturing and storing the atmospheric CO2, and additionally contributing to improving the quality of soil and water environment, and soil productivity is fully sustainable and combines the environmental, economic and social issues.
PL
Dzięki istnieniu naturalnych mechanizmów transformacji związków węgla zawartych w atmosferze w związki próchniczne, gleba stanowi istotny czynnik kontrolujący stężenie atmosferycznego CO2. Masa węgla zawartego w materii organicznej nagromadzonej w powierzchniowej warstwie skorupy ziemskiej jest większa niż masa tego pierwiastka w atmosferze lub biomasie organizmów żywych. W ostatnich latach wiele uwagi poświęca się roli gleb w ograniczeniu przyczyn zmian klimatycznych, poddając pod rozwagę możliwości zwiększenia w nich sekwestracji węgla. Taki sposób podejścia do problemu efektu cieplarnianego, nie wymagający wprowadzania złożonych i drogich rozwiązań technologicznych nakierowanych na wychwytywanie i magazynowanie atmosferycznego CO2, a dodatkowo przyczyniający się do poprawy jakości środowiska gruntowo-wodnego oraz produktywności gleb jest w pełni zrównoważony, gdyż łączy ze sobą zarówno kwestie środowiskowe, gospodarcze i społeczne.
Czasopismo
Rocznik
Strony
195--205
Opis fizyczny
Bibliogr. 72 poz., fig.
Twórcy
  • University of Life Science in Lublin, Faculty of Agrobioengineering, Institute of Soil Science and Environment Management, Leszczyńskiego 7, 20-069 Lublin, Poland
  • University of Life Science in Lublin, Faculty of Agrobioengineering, Institute of Soil Science and Environment Management, Leszczyńskiego 7, 20-069 Lublin, Poland
  • Lublin University of Technology, Faculty of Environmental Engineering, Nadbystrzycka 40B, 20-710 Lublin, Poland
  • Lublin University of Technology, Faculty of Environmental Engineering, Nadbystrzycka 40B, 20-710 Lublin, Poland
Bibliografia
  • 1. BALESTRINI R., LUMINI E., BORRIELLO R., BIANCIOTTO V., 2015, Plant-Soil Biota Interactions, in: Soil Microbiology, Ecology and Biochemistry (Fourth Edition), Academic Press, p. 311-338.
  • 2. BANWART S.A., BERNASCONI S.M., BLUM W.E.H., DE SOUZA D.M., CHABAUX F., DUFFY C., et al., 2017, Quantifying and managing soil functions in Earth’s critical zone – combining experimentation and mathematical modelling. Soil functions in Earth’s critical zone: key results and conclusions, in: Adv. Agron., 142, p. 1-27.
  • 3. BATJES N.H., 2013, Reader for the soil carbon benefits module, in: Proceedings of the ISRIC Spring School, April 22-26, 2013, Wageningen University Campus, The Netherlands, p. 1-16.
  • 4. BRYANT L., STOCKWEL, R., WHITE T., 2013, Counting Cover Crops, National Wildlife Federation, Washington DC, https://grasslandoregon.com/assets/ counting-cover-crops.pdf (22.05.2020).
  • 5. BURRAS C.L., KIMBLE J.M., LAL R., MAUSBACH M.J., UEHARA G., CHENG H.H., KISSEL D.E., LUXMOORE R.J., RICE C.W., WILDING LP., 2001, Carbon Sequestration: Position of the Soil Science Society of America, in: Agronomy Publications, 59, p. 1-4.
  • 6. CEL W., CZECHOWSKA-KOSACKA A., ZHANG T., 2016, Sustainable mitigation of greenhouse gases emission, in: Problemy Ekorozwoju/ Problems of Sustainable Development, 11(1), p. 173-176.
  • 7. CHABBI A., RUMPEL C., KOGEL-KNABNER I., 2009, Stabilised carbon in subsoil horizons is located in spatially distinct parts of the soil profile, in: Soil Biol. Biochem., 41, p. 256-261.
  • 8. CHRISTENSEN B.T., 1988, Effects of animal manure and mineral fertilizer on the total carbon and nitrogen contents of soil size fractions, in: Biol. Fertil. Soils, 5, p. 304-307.
  • 9. COLLINS H.P., ELLIOTT E.T., PAUSTIAN K., BUNDY L.G., DICK W.A., HUGGINS D.R., SMUCKER A.J.M., 2000, Soil carbon pools and fluxes in long-term corn belt agroecosystems, in: Soil Biol. Biochem., 32, p. 157-68.
  • 10. CONANT R.T., RYAN M.G., ÅGREN G.I., BIRGE H.E., DAVIDSON E.A., ELIASSON P.E., et al., 2011, Temperature and soil organic matter decomposition rates - synthesis of current knowledge and a way forward, in: Glob. Chang. Biol., 17 (11), p. 3392-3404.
  • 11. CONANT R.T., PAUSTIAN K., ELLIOTT E.T., 2001, Grassland management and conversion into grassland: effects on soil carbon, in: Ecological Applications, 11, p. 343-355.
  • 12. CREWS T.E., RUMSEY B.E., 2017, What agriculture can learn from native ecosystems in building soil organic matter: A review, in: Sustainability, 9(4), p. 578.
  • 13. CVETKOV M., ŠANTAVEC I., KOCJAN AČKO D., TAJNŠEK A., 2010, Soil organic matter content according to different management system within long-term experiment, in: Acta Agric. Slovenica, 95, p. 79-88.
  • 14. DAVIDSON E.A., JANSSENS I.A., 2006, Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, in: Nature, 440(7081), p. 165-173.
  • 15. DIACONO M., MONTEMURRO F., 2010, Long term effect of organic amendments on soil fertility. A Review, in: Gron. Sustain. Dev., 30, p. 411-422.
  • 16. DIXON R.K., BROWN S., HONGHTON R.A., SOLOMON A.M., TREXLER M.C., WIŚNIEWSKI J., 1994, Carbon pools and flux of global forest ecosystems, in: Science, 263, p. 185-190.
  • 17. DOBRZAŃSKI H., ZAWADZKI S. (eds.), 1995, Gleboznawstwo, 1995, PWRiL, Warszawa
  • 18. DOETTERL S., SIX J., VAN OOST K., CASANOVA-KATNY A., BOUDIN M., BOECKX P., STEVENTS A., MERCKX R., CASANOVA M.A., MUÑOZ C., ZAGAL E., 2015, Soil carbon storage controlled by interactions between geochemistry and climate, in: Nat. Geosci., 8(10), p. 780-783.
  • 19. DORADO J., ZANCADA M.C., ALMENDROS G., LO´PEZ-FANDO C., 2003, Changes in soil properties and humic substances after long term amendments with manure and crop residues in dryland farming systems, in: Journal of Plant Nutrition and Soil Science, 166, p. 31-38.
  • 20. ECCP, 2003, European Climate Change Programme, Final Report of Working Group: Sinks Related to Agricultural Soils https://ec.europa.eu/clima/sites/clima/ files/eccp/second/docs/finalreport_agricsoils_en.pdf (23.05.2020).
  • 21. EEA 2017, Soil, land and climate change, https:// www.eea.europa.eu/signals/signals-2019-content-list /articles/soil-land-and-climate-change (5.06.2020).
  • 22. GOH K.M., 2004, Carbon sequestration and stabilization in soils. Implications for soil productivity and climate change, in: Soil Science and Plant Nutrition, 50(4), p. 467-476.
  • 23. GONG W., YAN X.Y., WANG J.Y., HU T.X., GONG Y.B., 2009, Long-term manuring and fertilization effects on soil organic carbon pools under a wheat–maize cropping system in North China Plain, in: Plant and Soil, 314, p. 67-76 DOI:10.1016/s0038-0717(03)00186-x
  • 24. GREGORICH E.G., CARTER M.R., DORAN J.W., PANKHURST C.E., DWYER L.M., 1997, Biological attributes of soil quality, in: Dev. Soil Sci., 25, p. 81-113.
  • 25. HANSEN J., KHARECHA P., SATO M., MASSONDELMOTTE V., ACKERMAN F., BEERLING D.J, et al., 2013, Assessing ‘Dangerous Climate Change’: Required reduction of carbon emissions to protect young people, future generations and nature, ed. Añel J.A., in: PLOS One, 8(12), p. 1-26.
  • 26. HINES R., 1991, On Valuing Nature. Accounting, in: Auditing & Accountability Journal, 4(3).
  • 27. IMHOFF M.L., BOUNOUA L., RICKETTS T., LOUCKS C., HARRISS R., LAWRENCE W.T., 2004, Global patterns in human consumption of net primary production, in: Nature, 429, p. 870-873.
  • 28. IPCC, 2018, Global Warming of 1.5oC. Special Report, https://www.ipcc.ch/sr15/ (12.04.2020).
  • 29. IPCC, 2000, Land Use, Land-Use Change, and Forestry, eds. Watson R.T., Noble I.R., Bolin B., Ravindranath N.H., Verado D.V., Dokken D.J., Cambridge University Press, UK, https://ww www.ipcc.ch/repo rt/land-use-land-use-change-and-forestry/ (10.04.2020).
  • 30. IPCC, 2013, Climat change 2013: The Physical Science Basis, http://www.climatechange2013.org/ report/ (12.04.2020).
  • 31. JENKINSON D. S., 1990, The turnover of organic carbon and nitrogen in soil, in: Phil. Trans. R. Soc. B, 329, p. 361-368.
  • 32. JOBBAGY E.G., JACKSON R.B., 2000, The vertical distribution of soil organic carbon and its relation to climate and vegetation, in: Ecol. Appl., 10(2), p. 423-436.
  • 33. KAY B.D., VANDENBYGAART A.J., 2002, Conservation tillage and depth stratification of porosity and soil organic matter, in: Soil Till. Res., 66(2), p. 107-118.
  • 34. KIRCHMANN H., HABERHAUER G., KANDELER E., SESSITSCH A., GERZABEK M.H., 2004, Effects of level and quality of organic matter input on carbon storage and biological activity in soil: synthesis of a long-term experiment, in: Global Biogeochem. Cyc., 18, p. 247-259.
  • 35. KONG A.Y.Y., SIX J., BRYANT D.C., DENISON R.F., VAN KESSEL C., 2005, The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems, in: Soil Sci. Soc. Am. J., 69, p. 1078-1085.
  • 36. KORSCHENS M., MULLER A., 1996, The static experiment Bad Lauchst dt. Germany, in: Evaluation of soil organic matter: models using existing datasets, eds. Powlson D.S., Smith P., Smith J.U., Nato ASI Subseries I, 38, p. 369-387.
  • 37. KOVEN C.D., HUGELIUS G., LAWRENCE D.M, WIEDER W.R., 2017, Higher climatological temperature sensitivity of soil carbon in cold than warm climates, in: Nat. Clim. Chang., 7, p. 817-822
  • 38. KUNDU S., BAHATTACHARYYA S.K.R., PRAKASH V., GHOSH B.N., GUPTA H.S., 2007, Carbon sequestration and relationship between carbon addition and storage under rainfed soyabean-wheat rotation in sandy loam soil of the Indian Himalayes, in: Soil Till. Res., 92(1-2), p. 87-95.
  • 39. LAL R., 2004, Soil carbon sequestration to mitigate climate change, in: Geoderma, 123(1-2), p. 1-22.
  • 40. LAL R., 2005, Soil carbon sequestration in natural and managed tropical forest ecosystems, in: J Sustain For., 21, p. 1-30.
  • 41. LAL R., 2008, Carbon sequestration, in: Phil Trans R Soc B, 363(1492), p. 815-830.
  • 42. LAL R., 2015, Sequestering carbon and increasing productivity by conservation agriculture, in: Journal of Soil Water Conservation, 70(3), p. 55-62.
  • 43. LAMB D., ERSKINE P., PARROTTA J., 2005, Restoration of degraded tropical forest landscapes, in: Science, 310, p. 1628-1632.
  • 44. LEMKE R.L., VANDENBYGAART A.J., CAMPBELL C.A., LAFOND G.P., GRANT B., 2010, Crop residue removal and fertilizer N: effects on soil organic carbon in a long-term crop rotation experiment on a Udic Boroll, in: Agriculture, Ecosystems & Environment, 135, p. 42-51.
  • 45. LIEBIG M.A., MORGAN J.A., REEDER J.D., ELLERT B.H., GOLLANY H.T., SCHUMAN G.E., 2005, Greenhouse gas contributions and mitigation potential of agricultural practices in northwestern USA and western Canada., Soil Tillage Res., 83, p. 25-52.
  • 46. LUGATO E., LEIP A., JONES A., 2018, Mitigation potential of soil carbon management overestimated by neglecting N2O emissions, in: Nature Climate Change, 8, p. 219-223.
  • 47. MANN L.K., 1986, Changes in soil carbon storage after cultivation, in: Soil. Sci., 142, p. 279-288.
  • 48. MAZZONCINI M., SAPKOTA T.B., BÀRBERI P., ANTICHI D., RISALITI R., 2011, Long-term effect of tillage, nitrogen fertilization and cover crops on soil organic carbon and total nitrogen content, in: Soil Tillage Res., 114, p. 165-174.
  • 49. MERANTE P., DIBARI C., FERRISE R., BINDI M., LESSCHEN P.J., KUIKMAN P., SANCHEZ B., IGLESIAS A.. 2014, Report on critical low soil organic matter contents, which jeopardise good functioning of farming systems. Smart Soil Project. Sustainable farm Management Aimed at Reducing Threats to Soils under climate change, http://smartsoil.eu/fileadmin/www.smartsoil.eu/Deliverables/D2_4_SmartSoi l_Final.pdf (22.04.2020).
  • 50. METTING F.B., SMITH J.L., AMTHOR J.S., IZAURRALDE R.C., 2001, Science needs and new technology for increasing soil carbon sequestration, in: Climatic Change, 51, p. 11-34.
  • 51. MRABET R., SABER N., EL-BRAHLI A., LAHLOU S., BESSAM F., 2001, Total, particulate organic matter and structural stability of a Calcixeroll soil under different wheat rotations and tillage systems in a semiarid area of Morocco, in: Soil Till. Res., 57, p. 225-235.
  • 52. NEILL C., 2011, Impact of crop residue management on soil organic matter stocks. A modelling study, in: Ecological Modelling 222(15), p. 2751-2760.
  • 53. OLEJNIK T., SOBIECKA E., 2017, Utilitarian technological solutions to reduce CO2 emission in the aspect of sustainable development, in: Problemy Ekorozwoju/ Problems of Sustainable Development, 12(2), p. 173-179.
  • 54. OLSON K.R., 2013, Soil organic carbon sequestration, storage, retention and loss in U.S. croplands: Issues paper for protocol development, in: Geoderma, 195-196, p. 201-206.
  • 55. PAUSTIAN K., COLE C.V., SAUERBECK D., SAMPSON N., 1998, CO2 mitigation by agriculture: An overview, in: Climatic Change, 40(1), p. 135- 162.
  • 56. PAUSTIAN K., COLLINS H.P., PAUL E.A., 1997, Management controls on soil carbon, in: Soil Organic Matter in Temperate Agroecosystems: Long-Term Experiments in North America, eds. Paul E.A., Paustian K., Elliott E.T., and Cole C.V., CRC Press, Boca Raton, Florida, USA, p. 15-49.
  • 57. POEPLAU C., DON A., 2015, Carbon sequestration in agricultural soils via cultivation of cover crops – A meta-analysis, in: Agriculture Ecosystems & Environment, 200, p. 33-41.
  • 58. POEPLAU C., DON A., VESTERDAL L., LEIFELD J., VAN WESEMAEL B., SCHUMACHER J., GENSIOR A., 2011, Temporal dynamics of soil organic carbon after land-use change in the temperate zone – carbon response functions as a model approach, in: Global Change Biology, 17, p. 2415-2427.
  • 59. POST W.M., KWON K.C., 2000, Soil carbon sequestration and land-use change: Processes and potential, in: Global Change Biology, 6, p. 317-327.
  • 60. RANAIVOSON L., NAUDIN K., RIPOCHE A., AFFHOLDER F., RABEHARISOA L., CORBEELS M., 2017, Agro-ecological functions of crop residues under conservation agriculture. A review, in: Agronomy for Sustainable Development, 37, p. 26.
  • 61. SCHULTEN H.R., LEINWEBER P., 1991, Influence of long-term fertilization with farmyard manure on soil organic matter: Characteristics of particle-size fractions, in: Biology and Fertility of Soils, 12, p. 81- 88.
  • 62. SIMON T., 2008, The influence of long-term organic and mineral fertilization on soil organic matter, in: Soil and Water Res., 3(2), p. 41-51.
  • 63. SIX J., ELLIOTT E.T., PAUSTIAN K., 2000, Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under notillage agriculture, in: Soil Biol. Biochem., 32(14), p. 2099-2103.
  • 64. STOCKMANN U., ADAMS M., CRAWFORD J.W., FIELD D.J., HENAKAARCHCHIA N., JENKINS M. et al., 2013, The knowns, known unknowns and unknowns of sequestration of soil organic carbon, in: Agriculture, Ecosystems and Environment, 164, p. 80-90.
  • 65. STRASSMANN K.M.F., FISCHER J.G., 2008, Simulating effects of land use changes on carbon fluxes: past contributions to atmospheric CO2 increases and future commitments due to losses of terrestrial sink capacity, in: Tellus B 60(4), p. 583-603.
  • 66. TORN M.S., TRUMBORE S.E., CHADWICK O.A., VITOUSEK P.M., HENDRICKS D.M., 1997, Mineral control of soil organic carbon storage and turnover, in: Nature, 389, p. 170-173.
  • 67. TRIMBLE S.W., CROSSON P., 2000, U.S. soil erosion rates – myth and reality, in: Science, 289(5479), p. 248-250.
  • 68. WARDLE D.A., ZACKRISSON O., HORNBERG G., GALLET C., 1997, The influence of island area on ecosystem properties, in: Science, 277, p. 1296- 1299.
  • 69. WATANABE A., KAWASAKI S., KITAMURA S., YOSHIDA S., 2007, Temporal changes in humic acids in cultivated soils with continuous manure application, in: Soil Sci. Plant Nutr., 53(3), p. 535-544.
  • 70. WEISMEIER M., URBANSKI L., HOBLEY E., LANG B., MARIN-SPIOTTA E., et al., 2019, Soil organic carbon storage as a key function of soils – A review of drivers and indicators at various scales, in: Geoderma, 333, p. 149-162.
  • 71. WEST T.O., POST W.M., 2002, Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis, in: Soil Sci. Soc. Am. J., 66(6), p. 1930-1946.
  • 72. WITTER E, MORTENSSON A.M., GARCIA F.V., 1993, Size of the microbial mass in a long-term field experiment as affected by different N fertilizers, in: Soil Biol. Biochem., 28, p. 659-669.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7623a66-49d9-4a2d-a7d9-48c5f3278592
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.