PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonlinear mechanics of a compliant beam system undergoing large curvature deformation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A compliant beam subjected to large deformation is governed by a multifaceted nonlinear differential equation. In the context of theoretical mechanics, solution for such equations plays an important role. Since it is hard to find closed-form solutions for this nonlinear problem and attempt at direct solution results in linearising the model. This paper investigates the aforementioned problem via the multi-step differential transformation method (MsDTM), which is well-known approximate analytical solutions. The nonlinear governing equation is established based on a large radius of curvature that gives rise to curvature-moment nonlinearity. Based on established boundary conditions, solutions are sort to address the free vibration and static response of the deforming flexible beam. The geometrically linear and nonlinear theory approaches are related. The efficacy of the MsDTM is verified by a couple of physically related parameters for this investigation. The findings demonstrate that this approach is highly efficient and easy to determine the solution of such problems. In new engineering subjects, it is forecast that MsDTM will find wide use.
Rocznik
Strony
471--489
Opis fizyczny
Bibliogr. 40 poz., rys., wykr.
Twórcy
  • University of Lagos, Lagos, Nigeria
  • University of Lagos, Lagos, Nigeria
Bibliografia
  • [1] L.L. Howell, S.P. Magleby, and B.M. Olsen. Handbook of Compliant Mechanisms. Wiley, 2013. doi: 10.1002/9781118516485.
  • [2] K.E. Bisshopp and D.C. Drucker. Large deflection of cantilever beams. Quarterly of Applied Mathematics, 3(3):272–275, 1945. doi: 10.1090/qam/13360.
  • [3] T.M. Wang. Nonlinear bending of beams with concentrated loads. Journal of the Franklin Institute, 285(5):386–390, 1968. doi: 10.1016/0016-0032(68)90486-9.
  • [4] T.M. Wang. Non-linear bending of beams with uniformly distributed loads. International Journal of Non-Linear Mechanics, 4(4):389–395, 1969. doi: 10.1016/0020-7462(69)90034-1.
  • [5] I.S. Sokolnikoff and R.D. Specht. Mathematical Theory of Elasticity. McGraw-Hill, New York, 1956.
  • [6] R. Frisch-Fay. Flexible bars. Butterworths, 1962.
  • [7] S.P. Timoshenko and J.M. Gere. Theory of Elastic Stability. Courier Corporation, 2009.
  • [8] L.L. Howell. Compliant Mechanisms. Wiley, New York, 2001.
  • [9] T. Beléndez, C. Neipp, and A. Beléndez. Large and small deflections of a cantilever beam. European Journal of Physics, 23(3):371–379, 2002. doi: 10.1088/0143-0807/23/3/317.
  • [10] T. Beléndez, M. Pérez-Polo, C. Neipp, and A. Beléndez. Numerical and experimental analysis of large deflections of cantilever beams under a combined load. Physica Scripta, 2005(T118):61– 64. 2005. doi: 10.1238/Physica.Topical.118a00061.
  • [11] K. Mattiasson. Numerical results from large deflection beam and frame problems analysed by means of elliptic integrals. Interational Journal for Numerical Methods in Engineering, 17(1):145–153, 1981. doi: 10.1002/nme.1620170113.
  • [12] F. De Bona and S. Zelenika. A generalised elastica-type approach to the analysis of large displacements of spring-strips. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 211(7):509–517, 1997. doi: 10.1243/0954406971521890.
  • [13] H.-J. Su. A pseudorigid-body 3R model for determining large deflection of cantilever beams subject to tip loads. Journal of Mechanisms and Robotics, 1(2):021008, 2009. doi: 10.1115/1.3046148.
  • [14] H. Tari, G.L. Kinzel, and D.A. Mendelsohn. Cartesian and piecewise parametric large deflection solutions of tip point loaded Euler–Bernoulli cantilever beams. International Journal of Mechanical Sciences, 100:216–225, 2015. doi: 10.1016/j.ijmecsci.2015.06.024.
  • [15] Y.V. Zakharov and K.G. Okhotkin. Nonlinear bending of thin elastic rods. Journal of Applied Mechanics and Technical Physics, 43(5):739–744, 2002. doi: 10.1023/A:1019800205519.
  • [16] M. Batista. Analytical treatment of equilibrium configurations of cantilever under terminal loads using Jacobi elliptical functions. International Journal of Solids and Structures, 51(13):2308– 2326, 2014, doi: 10.1016/j.ijsolstr.2014.02.036.
  • [17] R. Kumar, L.S. Ramachandra, and D. Roy. Techniques based on genetic algorithms for large deflection analysis of beams. Sadhana, 29(6):589–604, 2004.
  • [18] M. Dado and S. Al-Sadder. A new technique for large deflection analysis of nonprismatic cantilever beams. Mechanics Research Communications, 32(6):692–703, 2005. doi: 10.1016/j.mechrescom.2005.01.004.
  • [19] B.S. Shvartsman. Large deflections of a cantilever beam subjected to a follower force. Journal of Sound and Vibration, 304(3-5):969–973, 2007. doi: 10.1016/j.jsv.2007.03.010.
  • [20] M. Mutyalarao, D. Bharathi, and B.N. Rao. On the uniqueness of large deflections of a uniform cantilever beam under a tip-concentrated rotational load. International Journal of Non-Linear Mechanics, 45(4):433–441, 2010. doi: 10.1016/j.ijnonlinmec.2009.12.015.
  • [21] M.A. Rahman, M.T. Siddiqui, and M.A. Kowser. Design and non-linear analysis of a parabolic leaf spring. Journal of Mechanical Engineering, 37:47–51, 2007. doi: 10.3329/jme.v37i0.819.
  • [22] D.K. Roy and K.N. Saha. Nonlinear analysis of leaf springs of functionally graded materials. Procedia Engineering, 51:538–543, 2013. doi: 10.1016/j.proeng.2013.01.076.
  • [23] A. Banerjee, B. Bhattacharya, and A.K. Mallik. Large deflection of cantilever beams with geometric nonlinearity: Analytical and numerical approaches. International Journal of NonLinear Mechanics,43(5):366–376, Jun. 2008. doi: 10.1016/j.ijnonlinmec.2007.12.020.
  • [24] L. Chen. An integral approach for large deflection cantilever beams. International Journal of Non-Linear Mechanics, 45(3)301–305, 2010. doi: 10.1016/j.ijnonlinmec.2009.12.004.
  • [25] C.A. Almeida, J.C.R. Albino, I.F.M. Menezes, and G.H. Paulino. Geometric nonlinear analyses of functionally graded beams using a tailored Lagrangian formulation. Mechanics Research Communications, 38(8):553–559, 2011. doi: 10.1016/j.mechrescom.2011.07.006.
  • [26] M. Sitar, F. Kosel, and M. Brojan. Large deflections of nonlinearly elastic functionally graded composite beams. Archives of Civil and Mechanical Engineering, 14(4):700–709, 2014., doi: 10.1016/j.acme.2013.11.007.
  • [27] D.K. Nguyen. Large displacement behaviour of tapered cantilever Euler–Bernoulli beams made of functionally graded material. Applied Mathematics and Computation, 237:340–355, 2014. doi: 10.1016/j.amc.2014.03.104.
  • [28] S. Ghuku and K.N. Saha. A theoretical and experimental study on geometric nonlinearity of initially curved cantilever beams. Engineering Science and Technology, an International Journal, 19(1):135–146, 2016. doi: 10.1016/j.jestch.2015.07.006.
  • [29] A.M. Tarantino, L. Lanzoni, and F.O. Falope. The Bending Theory of Fully Nonlinear Beams. Springer, Cham, 2019. doi: 10.1007/978-3-030-14676-4.
  • [30] S.J. Salami. Large deflection geometrically nonlinear bending of sandwich beams with flexible core and nanocomposite face sheets reinforced by nonuniformly distributed graphene platelets. Journal of Sandwich Structures & Materials, 22(3):866–895, 2020. doi: 10.1177/1099636219896070.
  • [31] T.T. Akano. An explicit solution to continuum compliant cantilever beam problem with various variational iteration algorithms. Advanced Engineering Forum, 32:1–13, 2019. doi: 10.4028/www.scientific.net/aef.32.1.
  • [32] J.K. Zhou. Differential Transformation and its Applications for Electrical Circuits. Huazhong University Press, Wuhan, China, 1986.
  • [33] S.K. Jena and S. Chakraverty. Differential quadrature and differential transformation methods in buckling analysis of nanobeams. Curved and Layered Structures, 6(1)68–76, 2019. doi: 10.1515/cls-2019-0006.
  • [34] M. Kumar, G.J. Reddy, N.N. Kumar, and O A. Bég. Application of differential transform method to unsteady free convective heat transfer of a couple stress fluid over a stretching sheet. Heat Transfer – Asian Research, 48(2):582–600, 2019. doi: 10.1002/htj.21396.
  • [35] G.C. Shit and S. Mukherjee. Differential transform method for unsteady magnetohydrodynamic nanofluid flow in the presence of thermal radiation. Journal of Nanofluids, 8(5):998–1009, 2019. doi: 10.1166/jon.2019.1643.
  • [36] D. Nazari and S. Shahmorad. Application of the fractional differential transform method to fractional-order integro-differential equations with nonlocal boundary conditions. Journal of Computational and Applied Mathematics, 234(3):883–891, Jun. 2010. doi: 10.1016/j.cam.2010.01.053.
  • [37] M.A. Rashidifar and A.A. Rashidifar. Analysis of vibration of a pipeline supported on elastic soil using differential transform method. American Journal of Mechanical Engineering, 1(4):96–102, 2013. doi: 10.12691/ajme-1-4-4.
  • [38] Y. Xiao. Large deflection of tip loaded beam with differential transformation method. Advanced Materials Research, 250-253:1232–1235, 2011. doi: 10.4028/www.scientific.net/AMR.250-253.1232.
  • [39] Z.M. Odibat, C. Bertelle, M.A. Aziz-Alaoui, and G.H.E. Duchamp. A multi-step differential transform method and application to non-chaotic or chaotic systems. Computers & Mathematics with Applications, 59(4):1462–1472, 2010. doi: 10.1016/j.camwa.2009.11.005.
  • [40] A. Arikoglu and I. Ozkol. Solution of differential-difference equations by using differential transform method. Applied Mathematics and Computation, 181(1):153–162, 2006. doi: 10.1016/j.amc.2006.01.022.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d761ca05-5b11-43ef-b242-e74efbcfb9a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.