PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Turbine wheel reduced modal model for self-excited vibration suppression by inter-blade dry-friction damping

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new approach to calculations based on the modal synthesis method is proposed for the evaluation of structural and dry-friction damping effects on self-excited vibrations due to aeroelastic instability in bladed turbine wheels. The method described herein is used to study dry-friction damping of self-excited vibration of an industrial turbine wheel with 66 blades. For evaluating damping effects, the blade couplings are applied to this particular turbine wheel. Therefore, neighbouring blades are interconnected by rigid arms that are fixed on one side to one blade and are in frictional contact on their free side with the other blade. Due to relatively normal motions in contacts, the prescribed contact forces vary over time. The aerodynamic excitation arises from the spatially periodical flow of steam through the stator blade cascade. In this paper, we attempt to model flow-induced instabilities with the Van der Pol model linked to relative motion between neighbouring blades. The proposed modal synthesis method as ROM is a computationally efficient solution allowing substantial parametrization. The effect of the angles of contact surfaces on the wheel dynamics and on the level of the self-excitation suppression will be discussed herein.
Rocznik
Strony
art. no. e148250
Opis fizyczny
Bibliogr. 57 poz., rys., tab.
Twórcy
  • Institute of Thermomechanics of the CAS, v. v. i., Dolejškova 1402/5, 182 00 Praha 8, Czech Republic
  • Institute of Thermomechanics of the CAS, v. v. i., Dolejškova 1402/5, 182 00 Praha 8, Czech Republic
  • Institute of Thermomechanics of the CAS, v. v. i., Dolejškova 1402/5, 182 00 Praha 8, Czech Republic
Bibliografia
  • [1] J. Rao, Turbomachine blade vibration. New Age International, 1991.
  • [2] W. Sextro, Dynamical contact problems with friction. Springer, 2007, doi: 10.1007/978-3-540-45317-8.
  • [3] A. Muszyńska and D. Jones, “Bladed disk dynamics investigated by a discrete model: effects of traveling wave excitation friction and mistuning,” in Proc. of the Machinery Vibration Monitoring and Analysis Meeting, vol. 49, 1982.
  • [4] A. Muszyńska and D. Jones, “On tuned bladed disk dynamics: Some aspects of friction related mistuning,” J. Sound Vib., vol. 86, no. 1, pp. 107–128, 1983, doi: 10.1016/0022-460X(83)90947-1.
  • [5] A. Muszyńska and D. Jones, “A parametric study of dynamic response of a discrete model of turbomachinery bladed disk,” ASME J. Vib. Acoust. Stress Reliab., vol. 105, pp. 434–443, 1983, doi: 10.1115/1.3269125.
  • [6] A. Francavilla and O. Zienkiewicz, “A note on numerical computation of elastic contact problems,” Int. J. Numer. Methods Eng., vol. 9, no. 4, pp. 913–924, 1975, doi: 10.1002/nme.1620090410.
  • [7] P. Wriggers, T. V. Van, and E. Stein, “Finite element formulation of large deformation impact-contact problems with friction,” Comput. Struct., vol. 37, no. 3, pp. 319–331, 1990, doi: 10.1016/0045-7949(90)90324-U.
  • [8] J.C. Simo and T. Laursen, “An augmented lagrangian treatment of contact problems involving friction,” Comput. Struct., vol. 42, no. 1, pp. 97–116, 1992, doi: 10.1016/0045-7949(92)90540-G.
  • [9] J. Awrejcewicz and Y. Pyr’yev, “Nonsmooth dynamics of contacting thermoelastic bodies,” ser. Advances in Mechanics and Mathematics. Springer, 2008, vol. 16, doi: 10.1007/978-0-387-09653-7.
  • [10] M. Wiercigroch and B. De Kraker, Applied nonlinear dynamics and chaos of mechanical systems with discontinuities, ser. World Scientific Series on Nonlinear Science Series A. World Scientific, 2000, vol. 28, doi: 10.1142/3345.
  • [11] L. Pešek and L. Půst, “Blade couple connected by damping element with dry friction contacts,” J. Theor. Appl. Mech., vol. 52, no. 3, pp. 815–826, 2014.
  • [12] N. Bachschmid, S. Bistolfi, M. Ferrante, P. Pennacchi, E. Pesatori, M. Sanvito et al., “An investigation on the dynamic behavior of blades coupled by shroud contacts,” Proc. SIRM, pp. 1–10, 2011.
  • [13] P. Pennacchi, S. Chatterton, N. Bachschmid, E. Pesatori, and G. Turozzi, “A model to study the reduction of turbine blade vibration using the snubbing mechanism,” Mech. Syst. Signal Process., vol. 25, no. 4, pp. 1260–1275, 2011, doi: 10.1016/j.ymssp.2010.10.006.
  • [14] L. Pešek, F. Vaněk, J. Veselý, V. Bula, and J. Cibulka, “Design of test excitation of traveling waves of rotating bladed wheels with multipoint electromagnetic excitation,” in Proc. of 9th international conference on vibrations in rotating machines, 2011, pp. 1–11.
  • [15] Y. Yamashita, K. Shiohata, T. Kudo, and H. Yoda, “Vibration characteristics of a continuous cover blade structure with friction contact surfaces of a steam turbine,” in 10th Int. Conf. on Vibrations in Rotating Machinery, 2012, pp. 323–332.
  • [16] L. Pešek, L. Půst, V. Bula, F. Vaněk, and J. Cibulka, “Inter-slip damping of twisted blades in opposed bundles under rotation,” in 10th Int. Conf. on Vibrations in Rotating Machinery, 2012, pp. 293–302.
  • [17] L. Pešek, L. Půst, V. Bula, F. Vaněk, and J. Cibulka, “Investigation of dry friction effect of shroud damping wire on model test bladed wheel,” in International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 55997, 2013, p. V008T13A050, doi: 10.1115/DETC2013-12851.
  • [18] L. Pešek, L. Půst, V. Bula, and J. Cibulka, “Numerical analysis of dry friction damping effect of tie-boss couplings on three blade bundle,” in International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 58226, 2017, p. V008T12A029, doi: 10.1115/DETC2017-67118.
  • [19] R. Drozdowski, L. Völker, M. Häfele, and D. Vogt, “Experimental and numerical investigation of the nonlinear vibrational behavior of steam turbine last stage blades with friction bolt damping elements,” in Turbo Expo: Power for Land, Sea, and Air, vol. 56796, 2015, p. V008T26A007, doi: 10.1115/GT2015-42244.
  • [20] K. Magnus, K. Popp, and W. Sextro, Schwingungen. Springer, 1976, doi: 10.1007/978-3-8348-2575-9.
  • [21] E. Petrov, “Method for direct parametric analysis of nonlinear forced response of bladed disks with friction contact interfaces,” J. Turbomach., vol. 126, no. 4, pp. 654–662, 2004, doi: 10.1115/1.1776588.
  • [22] E. Petrov, “Method for sensitivity analysis of resonance forced response of bladed disks with nonlinear contact interfaces,” J. Eng. Gas Turbine Power, vol. 131, no. 2, p. 022510, 2009, doi: 10.1115/1.2969094.
  • [23] K.Y. Sanliturk, M. Imregun, and D.J. Ewins, “Harmonic Balance Vibration Analysis of Turbine Blades With Friction Dampers,” J. Vib. Acoust., vol. 119, no. 1, pp. 96–103, 1997, doi: 10.1115/1.2889693.
  • [24] S. Zucca, C. M. Firrone, and M. M. Gola, “Numerical assessment of friction damping at turbine blade root joints by simultaneous calculation of the static and dynamic contact loads,” Non-linear Dyn., vol. 67, pp. 1943–1955, 2012, doi: 10.1007/s11071-011-0119-y.
  • [25] M. Barboteu, D. Danan et al., “Analysis of a dynamic viscoelastic contact problem with normal compliance, normal damped response, and nonmonotone slip rate dependent friction,” Adv. Math. Phys., vol. 2016, p. 1562509, 2016, doi: 10.1155/2016/1562509.
  • [26] D. Süß, M. Jerschl, and K. Willner, “Adaptive harmonic balance analysis of dry friction damped systems,” in Nonlinear Dynamics, Volume 1: Proceedings of the 34th IMAC, A Conference and Exposition on Structural Dynamics 2016, 2016, pp. 405–414, doi: 10.1007/978-3-319-29739-2_36.
  • [27] J. Voldřich, J. Lazar, P. Polach, and Š. Morávka, “Finding the stiffnesses of interface contact elements for the computational model of steam turbine blading,” in International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 58226, 2017, p. V008T12A018, doi: 10.1115/DETC2017-67712.
  • [28] L. Pešek, M. Hajžman, L. Půst, V. Zeman, M. Byrtus, and J. Brůha, “Experimental and numerical investigation of friction element dissipative effects in blade shrouding,” Nonlinear Dyn., vol. 79, pp. 1711–1726, 2015, doi: 10.1007/s11071-014-1769-3.
  • [29] V. Zeman and Z. Hlaváč, “Generalized modal reduction method for the dynamic analysis of rotating mechanical systems,” Appl. Comput. Mech., vol. 14, no. 1, pp. 81–98, 2020.
  • [30] L. Pešek, P. Šnábl, and V. Bula, “Dry friction interblade damping by 3d fem modelling of bladed disk: Hpc calculations compared with experiment,” Shock Vib., vol. 2021, p. 5554379, 2021, doi: 10.1155/2021/5554379.
  • [31] H. Atassi and T. Akai, “Effect of blade loading and thickness on the aerodynamics of oscillating cascades,” in 16th Aerospace Sciences Meeting, 1978, p. 227, doi: 10.2514/6.1978–227.
  • [32] J. Panovsky and R. Kielb, “A design method to prevent low pressure turbine blade flutter,” J. Eng. Gas Turbines Power, vol. 122, no. 1, pp. 89–98, 2000, doi: 10.1115/1.483180.
  • [33] D. Vogt, “Experimental investigation of three-dimensional mechanisms in low-pressure turbine flutter,” Ph.D. dissertation, KTH, School of Industrial Engineering and Management (ITM), Energy Technology, 2005. [Online]. Available: https://www.diva-portal.org/smash/get/diva2:7902/FULLTEXT01.pdf
  • [34] F. Barbarossa, A.B. Parry, J.S. Green, and L. di Mare, “An aero-dynamic parameter for low-pressure turbine flutter,” J. Turbomach., vol. 138, no. 5, p. 051001, 2016, doi: 10.1115/1.4032184.
  • [35] P. Petrie-Repar, V. Makhnov, N. Shabrov, E. Smirnov, S. Galaev, and K. Eliseev, “Advanced flutter analysis of a long shrouded steam turbine blade,” in Turbo Expo: Power for Land, Sea, and Air, vol. 45776, 2014, p. V07BT35A022, doi: 10.1115/GT2014-26874.
  • [36] C. Fuhrer and D.M. Vogt, “On the impact of simulation approaches on the predicted aerodynamic damping of a low pressure steam turbine rotor,” in Turbo Expo: Power for Land, Sea, and Air, vol. 50954, 2017, p. V008T29A007, doi: 10.1115/GT2017-63401.
  • [37] T. Tanuma et al., “Aerodynamic and structural numerical investigation of unsteady flow effects on last stage blades,” in Turbo Expo: Power for Land, Sea, and Air, vol. 56796, 2015, p. V008T26A035, doi: 10.1115/GT2015-43848.
  • [38] V. Slama, B. Rudas, J. Ira, A. Macalka, P. Eret, and V. Tsymbalyuk, “Subsonic stall flutter of a linear turbine blade cascade using experimental and cfd analysis,” in ASME International Mechanical Engineering Congress and Exposition, vol. 84546, 2020, p. V07AT07A026, doi: 10.1115/IMECE2020-23356.
  • [39] A. Laksana, A. Kokong, P.A. Sigit, T. Widjajanto, H. Setiawan, and I. Djunaedi, “Flutter analysis of last stage steam turbine power plant blade through transient blade row simulation,” in IOP Conference Series: Materials Science and Engineering, vol. 1096, no. 1, 2021, p. 012093, doi: 10.1088/1757-899X/1096/1/012093.
  • [40] L. Pinelli et al., “Aeromechanical characterization of a last stage steam blade at low load operation: Part 2—computational modelling and comparison,” in Turbo Expo: Power for Land, Sea, and Air, vol. 84218, 2020, p. V10AT24A017, doi: 10.1115/GT2020-15409.
  • [41] C. Prasad, P. Šnábl, P. Procházka, and S. Chindada, “Effect of geometrical and flow parameters on subsonic stall flutter in blade cascade,” in Proc. 19th Int. Forum Aeroelasticity and Structural Dynamics, 2022.
  • [42] C.S. Prasad, P. Šnábl, and L. Pešek, “A meshless method for subsonic stall flutter analysis of turbomachinery 3D blade cascade,” Bull. Pol. Acad. Sci. Tech. Sci, vol. 69, no. 6, p. e139000, 2021.
  • [43] C.S. Prasad, R. Kolman, and L. Pešek, “Meshfree reduced order model for turbomachinery blade flutter analysis,” Int. J. Mech., vol. 222, p. 107222, 2022.
  • [44] C.S. Prasad and L. Pešek, “Analysis of classical flutter in steam turbine blades using reduced order aeroelastic model,” in MATEC Web of Conferences, vol. 211, 2018, p. 15001, doi: 10.1051/matecconf/201821115001.
  • [45] D. Su, W. Zhang, and Z. Ye, “A reduced order model for uncoupled and coupled cascade flutter analysis,” J. Fluids Struct., vol. 61, pp. 410–430, 2016, doi: 10.1016/j.jfluidstructs.2015.11.013.
  • [46] J. Panovsky and R.E. Kielb, “A design method to prevent low pressure turbine blade flutter,” in Turbo Expo: Power for Land, Sea, and Air, vol. 78668, 1998, p. V005T14A052, doi: 10.1115/98-GT-575.
  • [47] M. Meingast, R.E. Kielb, and J.P. Thomas, “Preliminary flutter design method for supersonic low pressure turbines,” in Turbo Expo: Power for Land, Sea, and Air, vol. 48876, 2009, pp. 507–515, doi: 10.1115/GT2009-59177.
  • [48] D.M. Vogt and T.H. Fransson, “A new turbine cascade for aeromechanical testing,” in Proc. of the 16th Symposium on Measuring Techniques in Transonic and Supersonic Flow in Cascades and Turbomachines, 2002.
  • [49] P. Eret and V. Tsymbalyuk, “Experimental Subsonic Flutter of a Linear Turbine Blade Cascade With Various Mode Shapes and Chordwise Torsion Axis Locations,” J. Turbomach., vol. 145, no. 6, p. 061002, 2022, doi: 10.1115/1.4056204.
  • [50] V. Sláma et al., “Experimental and numerical study of controlled flutter testing in a linear turbine blade cascade,” Acta Polytechnica CTU Proceedings, vol. 20, pp. 98—-107, 2018, doi: 10.14311/APP.2018.20.0098.
  • [51] P. Jutur and R.N. Govardhan, “Flutter in Started and Unstarted Transonic Linear Cascades: Simultaneous Measurements of Unsteady Loads and Shock Dynamics,” J. Turbomach., vol. 141, no. 12, p. 121004, 2019, doi: 10.1115/1.4045105.
  • [52] P. Šidlof, D. Šimurda, J. Lepicovsky, M. Štěpán, and V. Vomáčko, “Flutter in a simplified blade cascade: Limits of the quasi-steady approximation,” J. Fluids Struct., vol. 120, p. 103913, 2023, doi: 10.1016/j.jfluidstructs.2023.103913.
  • [53] L. Pešek, P. Šnábl, and C.S. Prasad, “Reduced modal model of bladed turbine wheel for study of suppression of self-excited vibration by dry- friction contacts,” in Proc. 14th Int. conf. Dynamics of Rotating Machines (SIRM), Gda´nsk, Poland, 2021, pp. 371–380.
  • [54] L. Pešek, P. Šnábl, and C.S. Prasad, “Modal synthesis method for inter-blade dry-friction surface angle design of turbine wheel for vibration suppression,” in Proc. Int. Conf. Design Engineering Technical Conferences & Computers and Information in Engineering (IDETC/CIE), 2022, p. 9, doi: 10.1115/DETC2022-88382.
  • [55] J. He, “Structural modification,” Phil. Trans. R. Soc. A., vol. 359, pp. 187–204, 2001, doi: 10.1098/rsta.2000.0720.
  • [56] L. Půst and L. Pešek, “Blades forced vibration under aero-elastic excitation modeled by Van der Pol,” Int. J. Bifurcat. Chaos, vol. 27, no. 11, p. 1750166, 2017, doi: 10.1142/S0218127417501668.
  • [57] L. Půst, L. Pešek, and M. Byrtus, “Modelling of flutter running waves in turbine blades cascade,” J. Sound Vib., vol. 436, pp. 286–294, 2018, doi: 10.1016/j.jsv.2018.08.011.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7612a09-df42-472b-931d-6fd818d7825e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.