PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A novel melanoma detection model: adapted K-means clustering-based segmentation process

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Objectives: The main intention of this paper is to propose a new Improved K-means clustering algorithm, by optimally tuning the centroids. Methods: This paper introduces a new melanoma detection model that includes three major phase’s viz. segmentation, feature extraction and detection. For segmentation, this paper introduces a new Improved K-means clustering algorithm, where the initial centroids are optimally tuned by a new algorithm termed Lion Algorithm with New Mating Process (LANM), which is an improved version of standard LA. Moreover, the optimal selection is based on the consideration of multi-objective including intensity diverse centroid, spatial map, and frequency of occurrence, respectively. The subsequent phase is feature extraction, where the proposed Local Vector Pattern (LVP) and Grey-Level Co-Occurrence Matrix (GLCM)-based features are extracted. Further, these extracted features are fed as input to Deep Convolution Neural Network (DCNN) for melanoma detection. Results: Finally, the performance of the proposed model is evaluated over other conventional models by determining both the positive as well as negative measures. From the analysis, it is observed that for the normal skin image, the accuracy of the presented work is 0.86379, which is 47.83% and 0.245% better than the traditional works like Conventional K-means and PA-MSA, respectively. Conclusions: From the overall analysis it can be observed that the proposed model is more robust in melanoma prediction, when compared over the state-of-art models.
Rocznik
Strony
103--118
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
  • Research Scholar, Noorul Islam Centre for Higher Education, Kanyakumari, India
autor
  • Noorul Islam Centre for Higher Education, Kanyakumari, India
Bibliografia
  • 1. Do T, Hoang T, Pomponiu V, Zhou Y, Chen Z, Cheung NM, et al. Accessible melanoma detection using smartphones and mobile image analysis. IEEE Trans Multimed 2018;20: 2849-64.
  • 2. Hekler A, Utikal JS, Enk AH, Hauschild A, Collaborators. Superior skin cancer classification by the combination of human and artificial intelligence. Eur J Cancer 2019;120:114-21.
  • 3. Risica PM, Matthews NH, Dionne L, Mello J, Weinstock MA. Psychosocial consequences of skin cancer screening. Prev Med Rep 2018;10:310-6.
  • 4. Bhattacharjee P, Das A, Ashok K, Pritha Bhattacharjee G. Epigenetic regulations in alternative telomere lengthening: understanding the mechanistic insight in arsenic-induced skin cancer patients. Sci Total Environ 2020;704:135388.
  • 5. Warsi F, Khanam R, Kamya S, Paz Suárez-Araujo C. An efficient 3D color-texture feature and neural network technique for melanoma detection. Inf Med Unlocked 2019;17:100176.
  • 6. Mirbeik-Sabzevari A, Tavassolian N. Ultrawideband, stable normal and cancer skin tissue phantoms for millimeter-wave skin cancer imaging. IEEE (Inst Electr Electron Eng) Trans Biomed Eng 2019;66:176-86.
  • 7. Keshavarz A, Vafapour Z. Water-based terahertz metamaterial for skin cancer detection application. IEEE Sensor J 2019;19: 1519-24. Feb 15, 2019.
  • 8. Zhou Y, Herman C. Optimization of skin cooling by computational modeling for early thermographic detection of breast cancer. Int J Heat Mass Tran 2018;126:864-76.
  • 9. Yang Y, Wu R, Sargsyan D, Yin R, Kong A-N. UVB drives different stages of epigenome alterations during progression of skin cancer. Canc Lett 2019;449:20-30.
  • 10. Zhang F, Jin T, Hu Q, He P. Distinguishing skin cancer cells and normal cells using electrical impedance spectroscopy. J Electro Anal Chem 2018;823:531-6.
  • 11. Geetharamani G, Aathmanesan T. Split ring resonator inspired THz antenna for breast cancer detection. Optic Laser Technol 2020;126:106111.
  • 12. Dascalu A, David EO. Skin cancer detection by deep learning and sound analysis algorithms: a prospective clinical study of an elementary dermoscope. EBio Med 2019;43:107-13.
  • 13. Gordon LG, Brynes J, Baade PD, Neale RE, Janda M. Costeffectiveness analysis of a skin awareness intervention for early detection of skin cancer targeting men older than 50 years. Value Health 2017;20:593-601.
  • 14. Rahman A, Rahman AK, Rao B. Early detection of skin cancer via terahertz spectral profiling and 3D imaging. Biosens Bioelectron 2016;82:64-70.
  • 15. Maron RC, Weichenthal M, Utikal JS, Hekler A, Collabrators. Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks. Eur J Cancer 2019;119:57-65.
  • 16. Fusco P, Cofini V, Petrucci E, Scimia P, Paladini G, Behr AU, et al. Unilateral paravertebral block compared with subarachnoid anesthesia for the management of postoperative pain syndrome after inguinal herniorrhaphy: a randomized controlled clinical trial. Pain 2016;157:1105-13.
  • 17. Bonacaro A, Rubbi I, Sookhoo D. The use of wearable devices in preventing hospital readmission and in improving the quality of life of chronic patients in the homecare setting: a narrative literature review. Prof Inferm 2019;72:31550431.
  • 18. Massoudi AH, Jameel AS, Ahmad AR. Stimulating organizational citizenship behavior by applying organizational commitment and satisfaction. Int J Soc Sci Econ Rev 2020;2:20-7.
  • 19. Zhou Y, Herman C. Optimization of skin cooling by computational modeling for early thermographic detection of breast cancer. Int J Heat Mass Tran 2018;126:864-76.
  • 20. Zhang L, Ji Z, Zhang J, Yang S. Photodynamic therapy enhances skin cancer chemotherapy effects through autophagy regulation. Photodiagnosis Photodyn Ther 2019;28:159-65.
  • 21. Garcia MR, Requena MB, Pratavieira S, Tan Moriyama L, Magalhães DV. Development of a system to treat and online monitor photodynamic therapy of skin cancer using PpIX nearinfrared fluorescence. Photodiagnosis Photodyn Ther 2020; 30:101680.
  • 22. Vilanova Garcia D, da Silva Filho JI, Silveira L, Tavares Pacheco MT, Mario MC. Analysis of Raman spectroscopy data with algorithms based on paraconsistent logic for characterization of skin cancer lesions. Vib Spectrosc 2019;103:102929.
  • 23. Ravi RV, Subramaniam K. Image compression and encryption using optimized wavelet filter bank and chaotic algorithm. Int J Appl Eng Res 2017;12:10595-610.
  • 24. Thangam T, Kazem HA, Muthuvel K. SFOA: sun flower optimization algorithm to solve optimal power flow. Resbee Publishers.
  • 25. Rajakumar BR. Static and adaptive mutation techniques for genetic algorithm: a systematic comparative analysis. Int J Comput Sci Eng 2013;8:180-93.
  • 26. Thomas R, Rangachar MJS. Hybrid optimization based DBN for face recognition using low-resolution images. Multimed Res 2018;1:33-43.
  • 27. Bossolasco M, Maria Fenoglio L. Yet another PECS usage: a continuous PECS block for anterior shoulder surgery. J Anaesthesiol Clin Pharmacol 2018;34:569.
  • 28. Manassero A, Bossolasco M, Ugues S, Bailo C. An atypical case of two instances of mepivacaine toxicity. J Anaesthesiol Clin Pharmacol 2014;30:582.
  • 29. Nipanikar SI, Hima Deepthi V. Enhanced whale optimization algorithm and wavelet transform for image stenography. Multimed Res 2019;2:23-32.
  • 30. Vinolin V. Breast cancer detection by optimal classification using GWO algorithm. Multimed Res 2019;2:10-8.
  • 31. Nida N, Irtaza A, Ali J, Yousaf MH, Mahmood MT. Melanoma lesion detection and segmentation using deep region based convolutional neural network and fuzzy C-means clustering. Int J Med Inf 2019;124:37-48.
  • 32. Thanh DNH, Surya Prasath VB, Hieu NN. Melanoma skin cancer detection method based on adaptive principal curvature, colour normalisation and feature extraction with the ABCD rule. J Digit Imag 2020;33:574-85.
  • 33. Tan TY, Zhang L, Lim CP. Intelligent skin cancer diagnosis using improved particle swarm optimization and deep learning models. Appl Soft Comput 2019;84:105725.
  • 34. Mirbeik-Sabzevari A, Li S, Garay E, Nguyen H, Wang H, Tavassolian N. Synthetic ultra-high-resolution millimeter-wave imaging for skin cancer detection. IEEE (Inst Electr Electron Eng) Trans Biomed Eng 2019;66:61-71.
  • 35. Tan TY, Zhang L, Chin Neoh S, Lim CP. Intelligent skin cancer detection using enhanced particle swarm optimization. Knowl Base Syst 2018;158:118-35.
  • 36. Zhang N, Cai Y-X, Wang Y-Y, Tian Y-T, Badami B. Skin cancer diagnosis based on optimized convolutional neural network. Artif Intell Med 2020;102:101756.
  • 37. Jaworek-Korjakowska J, Kłeczek P. Automatic classification of specific melanocytic lesions using artificial intelligence. BioMed Res Int 2016. https://doi.org/10.1155/2016/8934242.
  • 38. Goyal M, Oakley A, Bansal P, Dancey D, Yap MH. Skin lesion segmentation in dermoscopic images with ensemble deep learning methods. IEEE Access 2019;8:4171-81.
  • 39. Anton N, Arponen O, Aki N, Masarwah A, Anna S, Liimatainen T, et al. Quantitative volumetric K-means cluster segmentation of fibroglandular tissue and skin in breast MRI. J Digit Imag 2018;31: 425-34.
  • 40. Boothalingam R. Optimization using lion algorithm: a biological inspiration from lion’s social behavior. Evol Intell 2018;11:31-52.
  • 41. Rajakumar BR. Optimization using lion algorithm: a biological inspiration from lion’s social behavior. Evol Intell, Special Issue on Nature inspired algorithms for high performance computing in computer vision 2018;11:31-52.
  • 42. Rajakumar BR. Lion algorithm for standard and large scale bilinear system identification: a global optimization based on Lion’s social behavior. Beijing, China: IEEE Congress on Evolutionary Computation; 2014:2116-23 pp.
  • 43. Rajakumar BR. The Lion’s algorithm: a new nature inspired search algorithm. In Procedia Technology-2nd International Conference on Communication, Computing & Security, vol 6; 2012:126-35 pp. (Elsevier).
  • 44. Rajakumar BR. Lion algorithm and its applications. In: Khosravy M, Gupta N, Patel N, Senju T, editors. Frontier applications of nature inspired computation in Springer tracts in nature-inspired computing (STNIC). Springer; 2020.
  • 45. Fan K-C, Hung T-Y. A novel local pattern descriptor-local vector pattern in high-order derivative space for face recognition. IEEE Trans Image Proc 2014;23:2877-91.
  • 46. Properties of variance. Available from: https://en.wikipedia.org/wiki/Qualitative_variation [Accessed 13 05 2020].
  • 47. Arabi PM, Joshi G, Deepa NV. Performance evaluation of GLCM and pixel intensity matrix for skin texture analysis. Perspect Sci 2016;8:203-6.
  • 48. Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, et al. Recent advances in convolutional neural networks. Pattern Recogn 2018; 77:354-77.
  • 49. Mukherjee S, Adhikari A, Roy M. Malignant melanoma detection using multilayer perceptron with optimized network parameter selection by PSO. In Contemporary advances in innovative and applicable information technology; 2018;812:101-9.
  • 50. Sukanya. Deep learning based melanoma detection with optimized features via hybrid algorithm. In Communication; 2019.
  • 51. Jadhav AR, Ghontale AG, Shrivastava VK. Segmentation and border detection of melanoma lesions using convolutional neural network and SVM. In Computational Intelligence: Theories, Applications and Future Directions; 2018, vol 1:97-108 pp.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d75e0321-a640-4201-888e-d0d119649d69
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.