Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Article delved into the environmental impact of artillery fire, proposing an innovative sampling method for assessing its effects. With a focus on minimizing ecological harm from military operations, particularly in light of the ongoing war in Ukraine, it explained a new approach to defining environmental damage based on the detection of the harmfulness of a specific type of ammunition. The proposed approach offers a more accurate determination of environmental impacts than traditional sampling methods that do not identify the specific agent. The article outlined the first step in addressing artillery environmental impacts by introducing a new crater soil sampling methodology, refined through experimental artillery fires. This method ensures enough samples are collected for valid chemical analysis and identification of soil pollution caused by specific types of ammunition. In addition to the sampling methodology, the article explained the nature of the execution of experimental artillery fire and the necessary considerations in relation to the shape of the crater and defining of its center, which is a necessary step to the layout of the sampling scheme. Applying the method will precisely define the environmental impacts of each projectile type, enabling accurate determination of post-war restoration requirements for artillery-affected areas.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1--14
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
autor
- Fire Support Department, University of Defence, Kounicova 65, Brno, Czech Republic
autor
- Fire Support Department, University of Defence, Kounicova 65, Brno, Czech Republic
autor
- Department of Process Engineering, Brno University of Technology, Antonínská 548/1, Brno, Czech Republic,
autor
- Fire Support Department, University of Defence, Kounicova 65, Brno, Czech Republic
autor
- Department of Military Tactics and Operational Art, Armed Forces Academy of General Milan Rastislav Štefánik, Demänová 393, Liptovský Mikuláš, Slovakia
Bibliografia
- 1. Al-Shammari, A. (2016). Environmental pollutions associated to conflicts in Iraq and related health problems. Reviews on Environmental Health, 31(4), 245–250. https://doi.org/10.1515/reveh-2015-0024
- 2. Angurets, O., Khazan, P., Kolesnikova, K., Kushch, M., Černochová, M., & Havránek, M. (2023). Environmental consequences of Russian war in Ukraine. Arnika.
- 3. Blaha, M., Potužák, L., Šustr, M., Ivan, J., & Havlík, T. (2021). Simplification options for more efficient using of angular and linear measuring rules for fire control. International Journal of Education and Information Technologies, 15(15), 28–34. https://doi.org/10.46300/9109.2021.15.4
- 4. Cranny-Evans, S. (2023). Russia’s artillery war in Ukraine: Challenges and innovations. The Royal United Services Institute (RUSI), London.
- 5. Frey, R. (2013). Agent Orange and America at war in Vietnam and Southeast Asia. Human Ecology Review, 20(1), 1–10.
- 6. Gady, S., & Kofman, M. (2023). Ukraine’s strategy of attrition. Survival, 65(2), 7–22. https://doi.org/10.1080/00396338.2023.2193092
- 7. Hanáková, N., Maňas, P., Rolenec, O., & Palasiewicz, T. (2022). National defense and environmental protection: On the Czech Armed Forces approach to the development of environmental legislation in the Czech, EU and NATO context. Czech Military Review, 4(1), 172–187. https://doi.org/10.3849/2336-2995.31.2022.04.172-202
- 8. Heiderscheidt, D. (2018). The impact of World War One on the forests and soils of Europe. The Undergraduate Research Journal at the University of Northern Colorado, 7(3).
- 9. Hewitt, A., Jenkins, T., Ramsey, C., Bjella, K., Ranney, T., & Perron, N. (2005). Estimating energetic residue loading on military artillery ranges: Large decision units. US Army Corps of Engineers.
- 10. Hewitt, A., Jenkins, T., Walsh, M., & Walsh, M. (2007). Protocols for collection of surface soil samples at military training and testing ranges for the characterization of energetic munitions constituents. US Army Corps of Engineers.
- 11. Hewitt, A., & Walsh, M. (2003). On-site processing and subsampling of surface soil samples for the analysis of explosives. US Army Corps of Engineers.
- 12. Hrnčiar, M., & Kompan, J. (2023). Factors shaping the employment of military force from the perspective of the war in Ukraine. Czech Military Review, 321(1), 69–82. https://doi.org/10.3849/2336-2995.32.2023.01.069-082
- 13. Hryhorczuk, D., Levy, B., Prodanchuk, M., Kravchuk, O., Bubalo, N., Hryhorczuk, A., & Erickson, T. (2024). The environmental health impacts of Russia’s war on Ukraine. Journal of Occupational Medicine and Toxicology, 19. https://doi.org/10.1186/s12995-023-00398-y
- 14. Hupy, J. (2008). The environmental footprint of war. Environment and History, 14(3), 405–421. https://doi.org/10.3197/096734008X333581
- 15. Hupy, J. (2006). The long‐term effects of explosive munitions on the WWI battlefield surface of Verdun, France. The Scottish Geographical Magazine, 122(2), 167–184. https://doi.org/10.1080/00369220618737264
- 16. Ivan, J., Rybář, J., Zaujec, M., Hnízdil, P., Přígrodský, M., Rostaš, J., Škorpil, T., Snídal, P., Valoušek, M., & Živnůstka, D. (2022). Analytical study of research project artillery manual gunnery rules 2022. University of Defence. Brno.
- 17. Jenkins, T., Hewitt, A., Ranney, T., Ramsey, C., Lambert, D., Bjella, K., & Perron, N. (2004a). Sampling strategies near a low-order detonation and a target at an artillery impact area. US Army Corps of Engineers.
- 18. Jenkins, T., Hewitt, A., Walsh, M., Ranney, T., Ramsey, C., Grant, C., & Bjella, K. (2005). Representative sampling for energetic compounds at military training ranges. Environmental Forensics, 6(1), 45–55. https://doi.org/10.1080/15275920590913912
- 19. Jenkins, T., Hewitt, A., Walsh, M., Thiboutot, S., Ampleman, G., Ranney, T. A., & Pennington, J. C. (2004b). Distribution of energetic compounds in soils at training ranges. Chemosphere, 2006(3), 1280–1290.
- 20. Jenkins, T., Ranney, T., Hewitt, A., Walsh, M., & Bjella, K. (2004c). Representative sampling for energetic compounds at an antitank firing range. US Army Corps of Engineers.
- 21. Jenkins, T., Ranney, T., Walsh, M., Miyares, P., & Hewitt, A. (2000). Evaluating the use of snow-covered ranges to estimate the explosives residues that result from detonation of Army munitions. US Army Corps of Engineers.
- 22. Karber, P. (2015). Lessons learned from the Russo-Ukrainian war: Personal observations. In: Historical Lessons Learned Workshop. U.S. Army Capabilities Integration Center (ARCIC), TRADOC.
- 23. Keller, T. (2014). Destruction of the ecosystem. In International Encyclopedia of the First World War.
- 24. Kiernan, K. (2010). Environmental degradation in karst areas of Cambodia: A legacy of war? Land Degradation & Development, 21(5), 503–519. https://doi.org/10.1002/ldr.988
- 25. Mitchell, A. E., Sivitz, L. B., & Black, R. E. (2007). Gulf war and health. https://doi.org/10.17226/11765
- 26. Palasiewicz, T., Rolenec, O., Kroupa, L., Maňas, P., & Coufal, D. (2023). Blast-induced deformations of the building entrance part caused by improvised shaped charges. LNCS, 13866, 109–130. https://doi.org/10.1007/978-3-031-31268-7_7
- 27. Pennington, J., Ampleman, G., Thiboutot, S., Brannon, J. M., Hewitt, A. D., Lewis, J., Brochu, S., Diaz, E., Walsh, M., Taylor, S., Lynch, J. C., Clausen, J., Ranney, T. A., Ramsey, C., Hayes, C. A., Grant, C. L., Collins, C. M., & Dontsova, K. (2006). Distribution and fate of energetics on DoD test and training ranges: Final report. U.S. Army Engineer Research and Development Center.
- 28. U.S. Army Corps of Engineers. (2021). Sampling and Analysis Plan/Results (SAP/R) Guidelines (SAPRG). Los Angeles District.
- 29. Shulga, I., Shynkaruk, N., & Arjjumend, H. (2024). Environmental effects of Russian war in Ukraine. https://doi.org/10.33002/ukrainewar-02
- 30. Swintek, P. (2006). The environmental effects of war. Student Theses, 2001–2013, 71.
- 31. Sýkora, F., Rolenec, O., & Kroupa, L. (2023). The charges that can be used for explosive breaching into urban structures within the engineer mobility support in an urbanized environment. In: Proceedings of 2023 International Conference on Military Technologies (pp. 1–6). https://doi.org/10.1109/ICMT58149.2023.10171249
- 32. Šlouf, V., Blaha, M., Pekař, O., Brizgalová, L., & Mullner, V. (2023). An alternative model for determining the rational amount of funds allocated to defence of the Czech Republic. Defence and Strategy, 23(1), 149–172. https://doi.org/10.3849/1802-7199.23.2023.01.149-172
- 33. Švehlík, M., Sedláček, M., Hasilová, K., Šlouf, V., & Drábek, J. (2024). Mathematical modeling of fuze by explosives: Applications in engineer and artillery support. In: Challanges to national defence in contemporary geopolitical situation. Vilnius: General Jonas Žemaitis Military Academy of Lithuania. ISSN 2538-8959.
- 34. United Nations Environment Programme. (2022). The environmental impact of the conflict in Ukraine. Nairobi, Kenya.
- 35. Vajda, M. (2023). Analysis of target engagement procedures by the field artillery of Slovak armed forces. Vojenské Reflexie, 18(1), 78–90. https://doi.org/10.52651/vr.a.2023.1.78-90
- 36. Varecha, J. (2020). Zvyšovanie presnosti a hospodárnosti delostreleckej paľby. Vojenské Reflexie, 152, 122–152.
- 37. Varecha, J., & Majchút, I. (2019). Modelling of artillery fire and simulation of its efficiency. In: Proceedings of International Conference Knowledge-Based Organization (pp. 174–180). https://doi.org/10.1515/kbo-2019-0134
- 38. Walsh, M., Collins, C., Walsh, M., Ramsey, C., Taylor, S., Bigl, S., Bailey, R., Hewitt, A., & Prieksat, M. (2008). Energetic residues and crater geometries from the firing of 120-mm high-explosive mortar projectiles into Eagle River Flats. US Army Corps of Engineers.
- 39. Walsh, M., Taylor, S., Walsh, M., Bigl, S., Bjella, K., Douglas, T., Gelvin, A., Lambert, D., & Perron, N. (2005a). Residues from live fire detonations of 155-mm howitzer rounds. US Army Corps of Engineers.
- 40. Walsh, M., Walsh, M., Ramsey, C., & Jenkins, T. (2005b). An examination of protocols for the collection of munitions-derived explosives residues on snow-covered ice. US Army Corps of Engineers
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d75d6cc7-08f3-40f1-a692-c2af50778a76
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.