PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of severe plastic deformation on the IF steel properties, evolution of structure and crystallographic texture after dual rolls equal channel extrusion deformation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents some results of the influence of severe plastic deformation on the microstructure evolution, grain refinement aspect, and mechanical properties of ultra-low carbon steel. Ti-stabilized experimental IF steel was deformed at a room temperature with unconventional SPD process—dual rolls equal channel extrusion (DRECE). Mechanical properties and structure of ferritic steel in initial state and after selected steps of deformation were investigated. The mechanical properties were determined by static tensile tests carried out at a room temperature and microhardness research. The structural investigations involved using scanning transmission electron microscopy observations, electron back scattered diffraction and measurements of the crystallographic texture. The DRECE process affects the evolution of the structure. The microstructural investigations revealed that the processed strips exhibited a dislocation cell and grain structures with mostly low angle grain boundaries. The electron backscattering diffraction (EBSD) examination showed that the processed microstructure is homogeneous along the strips thickness. The mechanical properties of the DRECE-processed IF steel strips increased with an increase the number of passes.
Rocznik
Strony
310--319
Opis fizyczny
Bibliogr. 30 poz., rys., wykr.
Twórcy
  • Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
autor
  • Faculty of Mechanical Engineering, Wroclaw University of Technology, Ignacego Łukasiewicza 5, 50-371 Wrocław, Poland
autor
  • Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
autor
  • Institute of Metallurgy and Materials Science of Polish Academy of Sciences, Reymonta 25, 30-059 Kraków, Poland
autor
  • Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
  • Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
  • UTP University of Science and Technology, Al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
Bibliografia
  • [1] Narayanasamy R, Sathiya Narayanan C. Forming, fracture and wrinkling limit diagram for if steel sheets of different thickness. Mater Des. 2008;7:1467–75.
  • [2] Jin YH, Huh MY, Chung YH. Evolution of texture and microstructure in IF-steel sheets during continuous confined strip shearing and subsequent recrystallization annealing. J Mater Sci. 2004;39:5311–4.
  • [3] Tjong SC, Chen H. Nanocrystalline materials and coatings. Mater Sci Eng A. 2004;45:1–88.
  • [4] Valiev R, Krasilnikov NA, Tsenev NK. Plastic deformation of alloys with submicrongrained structure. Mater Sci Eng A. 1991;137:35–40.
  • [5] Song R, Ponge D, Raabe D, Speer JG, et al. Overview of processing, microstructural and mechanical properties of ultrafinegrained bbc steels. Mater Sci Eng, A. 2006;441:1–17.
  • [6] Takaki S, Kawasaki K, Kimura Y. Mechanical properties of ultra fine grained steel. J Mater Process Technol. 2001;117:359–71.
  • [7] Belyakov A, Sakai T, Miura H, Kaibyshev R. Strain-induced submicrocrystalline grains developed in austenitic stainless steel under severe warm deformation. Philos Mag Lett. 2000;80:711–8.
  • [8] Hickson MR, Hodgson PD. Effect of preroll quenching and post-roll quenching on production and properties of ultrafine ferrite in steel. Mater Sci Technol. 1999;15:85–90.
  • [9] Han B, Yue S. Processing of ultrafine ferrite steels. J Mater Process Technol. 2003;136:100–4.
  • [10] Alexander DJ. New methods for severe plastic deformation processing. J Mater Eng Perform. 2007;16:360–74.
  • [11] Jamaati R, Toroghinejad M. Fabrication of nano/ultra-fine grained IF steel via SPD processes: a review. Trans Indian Inst Met. 2014;67:787–802.
  • [12] Saraya O, Purceka G, Karamanb I, et al. Equal-channel angular sheet extrusion of interstitial-free (IF) steel: microstructural evolution and mechanical properties. Mater Sci Eng, A. 2011;528:6573–83.
  • [13] Tsuji N, Ueji R, Minamino Y. Nonoscale crystallographic analysis of ultrafine grained IF steel fabricated by ARB process. Scripta Mater. 2002;47:69–76.
  • [14] Kamikawa N, Sakai T, Tsuji N. Effect of redundant shear strain on microstructure and texture evolution during accumulative roll-bonding in ultralow carbon IF steel. Acta Mater. 2007;55:5873–88.
  • [15] Costa A, Reis A, Kestens L, Andrade M. Ultra grain refinement and hardening of IF–steel during cumulative roll-bonding. Mater Sci Eng, A. 2005;406:279–85.
  • [16] Kim HS, Ryu WS, Janeček M, Baik SC, Estrin Y. Effect of equal channel angular pressing on microstructure and mechanical properties of IF steel. Adv Eng Mater. 2005;7:43–6.
  • [17] Mathis K, Krajnak T, Kuzel R, et al. Structure and mechanical behavior of interstitial free steel processes by equal channel angular pressing. J Alloy Compd. 2011;509:3522–5.
  • [18] Sujoy S, Hazra E, Pereloma A. Microstructure and mechanical properties after annealing of equal-channel angular pressed interstitial-free steel. Acta Mater. 2011;59:4015–29.
  • [19] Eddahbi M, Rauch EF. Texture and microstructure of ultra-low carbon steel processed by equal channel angular extrusion. Mater Sci Eng, A. 2009;502:13–24.
  • [20] Wongsa-Ngam J, Wen H, Langdon TG. Microstructural evolution in a Cu-Zr alloy processes by a combination of ECAP and HPT. Mater Sci Eng A. 2012;579:105–15.
  • [21] Lugo N, Lorca N, Cabrera JM, Horita Z. Microstructures and mechanical properties of pure copper deformed severely by ECAP pressing and high pressure torsion. Mater Sci Eng A. 2018;477:366–71.
  • [22] Rusz S, Kłyszewski A, Salajka M, Hilser O, Cizek L, Klos M. Possibilities of application methods DRECE in forming of non-ferrous metals. Arch Metall Mater. 2015;60:3011–6.
  • [23] Rusz S, Cizek L, Michenka V et al. New type of device for achievement of grain refinement in metal strip, COMAT 2014, 19–21.11.2014 r. Pilsen, Czech Republic EU. 2014.
  • [24] Kowalczyk K, Jabłońska M, Rusz S, et al. Influence of the DRECE proces of severe plastic deformation on the mechanical properties of the ultra-low carbon interstitial free steel. Arch Metall Mater. 2018;63:2095–100.
  • [25] Jabłońska MB, Kowalczyk K, Tkocz M, et al. Dual rolls equal channel extrusion as unconventional SPD process of the ultralow-carbon steel: finite element simulation, experimental investigations and microstructure analysis. Arch Civil Mech Eng. 2021. https://doi.org/10.1007/s43452-020-00166-3.
  • [26] ASTM E8/E8M–13a Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken. 2013.
  • [27] Ma E. Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys. JOM. 2006;58:49–53.
  • [28] Meyersm MA, Ashworth E. A model for the effect of grain size on the yield stress of metals. Philos Mag A. 1982;46:737–59.
  • [29] Nalepa K, Skoczeń B, Ciepielowska M, et al. Austenitic steel induced by fracture at cryogenic temperatures: experiment and modelling. Materials. 2021;14:127–34.
  • [30] Sun PL, Kao PW, Chang CP. High angle boundary formation by grain subdivision in equal channel angular extrusion. Scripta Mater. 2004;51:565–70.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d75a260e-20b6-4ddb-9569-4dde4cffb1c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.