Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Magnesium oxide (MgO) is an essential material for producing solid oxide fuel cells (SOFC) sealant. It can be derived from bittern waste. The common approach uses membrane electrolysis, which requires complex equipment and high energy costs. Alternatively, direct electrolysis can be taken using proper parameters to maximize the production rate. This work analyzes the process according to the input voltage, which varies between 10 and 16 Volts. The designed working voltage is suitable for direct conversion from renewable sources such as photovoltaic. The evaluation shows that the working voltage notably affects the reaction rate of the bittern solution. The working voltage of 16 Volts has the lowest power factor (2.58), while the working voltage of 10 Volts indicates the highest power factor of 3.56. It makes the reaction rate for the working voltage of 10 Volts extremely low, causing the lowest production rate of MgO with only 4.27 Grams. Oppositely, the suitable working voltage improves the production of MgO up to 75%. Microscope evaluation indicates that the produced MgO from the process has a lower agglomeration concentration after heat treatment at 700 °C, which is desirable to ensure effective fuel transfer in fuel cell apparatus.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
476--483
Opis fizyczny
Bibliogr. 38 poz., fig.
Twórcy
autor
- Department of Mechanical Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
autor
- Department of Mechanical Engineering, Universitas Muhammadiyah Semarang, Semarang 50275, Indonesia
autor
- Department of Mechanical Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
autor
- Department of Mechanical Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Pancasila, DKI Jakarta 12640, Indonesia
Bibliografia
- 1. Beithou N, Mansour MA, Abdellatif N, Alsaqoor S, Tarawneh S, Jaber AH, Andruszkiewicz A, Alsqour M, Borowski G, Alahmer A, Siderska J. Effect of the Residential Photovoltaic Systems Evolution on Electricity and Thermal Energy Usage in Jordan. Advances in Science and Technology Research Journal 2023; 17(3): 79–87.
- 2. Suyitno BM, Rahman RA, Sukma H, Rahmalina D. the Assessment of Reflector Material Durability for Concentrated Solar Power Based on Environment Exposure and Accelerated Aging Test. Eastern-European Journal of Enterprise Technologies 2022; 6(12–120):22–9.
- 3. Tanim TR, Yang Z, Colclasure AM, Chinnam PR, Gasper P, Lin Y, Yu L, Weddle PJ, Wen J, Dufek EJ, Bloom I, Smith K, Dickerson CC, Evans MC, Tsai Y, Dunlop AR, Trask SE, Polzin BJ, Jansen AN. Extended cycle life implications of fast charging for lithium-ion battery cathode. Energy Storage Materials 2021; 41(May): 656–66. https://doi.org/10.1016/j.ensm.2021.07.001.
- 4. Ode L, Firman M, Rahmalina D, Rahman RA. Hybrid energy-temperature method (HETM): A low-cost apparatus and reliable method for estimating the thermal capacity of solid – liquid phase change material for heat storage system. HardwareX 2023; 16(Dec.): e00496.
- 5. Miao J, Tong Z, Tong S, Zhang J, Mao J. State of charge estimation of lithium-ion battery for electric vehicles under extreme operating temperatures based on an adaptive temporal convolutional network. Batteries 2022; 8(10).
- 6. Suyitno BM, Anggrainy R, Plamonia N, Rahman RA. Preliminary characterization and thermal evaluation of a direct contact cascaded immiscible inorganic salt/high-density polyethylene as moderate temperature heat storage material. Results in Materials 2023; 19(June): 100443. https://doi.org/10.1016/j.rinma.2023.100443.
- 7. Yao J, Wang B, Chen H, Han Z, Wu Y, Cai Z, Manggada GW, Elsayed MA, Zhou S. Effect of copper cluster on reaction pathways of carbon dioxide hydrogenation on magnesium hydride surface. International Journal of Hydrogen Energy. 2024; 78(April): 1089–98. https://doi.org/10.1016/j.ijhydene.2024.06.382.
- 8. Zheng K, Lach J, Zhao H, Huang X, Qi K. Magnesium-doped Sr2(Fe,Mo)O6−δ double perovskites with excellent redox stability as stable electrode materials for symmetrical solid oxide fuel cells. Membranes 2022; 12(10).
- 9. Yang Y, Li M, Ren Y, Li Y, Xia C. Magnesium oxide as synergistic catalyst for oxygen reduction reaction on strontium doped lanthanum cobalt ferrite. International Journal of Hydrogen Energy 2018; 43(7): 3797–802. https://doi.org/10.1016/j.ijhydene.2017.12.183
- 10. Liang Q, Tang P, Zhou J, Bai J, Tian D, Zhu X, Zhou D, Wang N, Yan W. Effect of MgO and Fe2O3 dual sintering aids on the microstructure and electrochemical performance of the solid state Gd0.2Ce0.8O2-δ electrolyte in intermediate-temperature solid oxide fuel cells. Frontiers in Chemistry 2022; 10(Sept.): 1–14.
- 11. Krainova DA, Saetova NS, Polyakova IG, Farlenkov AS, Zamyatin DA, Kuzmin A V. Behaviour of 54.4SiO2-13.7Na2O-1.7K2O-5.0CaO-12.4MgO-0.6Y2O3-11.3Al2O3-0.9B2O3 HT-SOFC glass sealant under oxidising and reducing atmospheres. Ceramics International 2022; 48(5): 6124–30. https://doi.org/10.1016/j.ceramint.2021.11.151.
- 12. Rodrigues DM, Carvalho AP, do Amaral Fragoso R, Hein T, de Brito AG. Bittern-impregnated sisal: An alternative magnesium source for phosphorus recovery through struvite precipitation? Journal of Water Process Engineering 2022; 50(Oct.).
- 13. Khajouei G, Park H Il, Finklea HO, Ziemkiewicz PF, Peltier EF, Lin LS. Produced water softening using high-pH catholyte from brine electrolysis: reducing chemical transportation and environmental footprints. Journal of Water Process Engineering 2021; 40(Dec. 2020): 101911.
- 14. Pan XJ, Dou ZH, Zhang TA, Meng DL, Fan YY. Separation of metal ions and resource utilization of magnesium from saline lake brine by membrane electrolysis. Separation and Purification Technology 2020; 251(June): 117316.
- 15. Lee Y, Yang JK, Park JH. Thermodynamics of fluoride-based molten fluxes for extraction of magnesium through the low temperature solid oxide membrane (LT-SOM) process. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry 2018; 62(July): 232–7. https://doi.org/10.1016/j.calphad.2018.07.006.
- 16. Díaz Nieto CH, Palacios NA, Verbeeck K, Prévoteau A, Rabaey K, Flexer V. Membrane electrolysis for the removal of Mg2+ and Ca2+ from lithium rich brines. Water Research 2019; 154: 117–24.
- 17. Sun B, Li Y, Guo H, Chen X, Cao J. Fast and complete recovery of magnesium from sea bittern to synthesize magnesium hydroxide hexagonal nanosheet for enhanced flame retardancy and mechanical properties of epoxy resin. Desalination 2024; 583(5340): 117716. https://doi.org/10.1016/j.desal.2024.117716.
- 18. Mahmud N, Alvarez DVF, Ibrahim MH, El-Naas MH, Esposito DV. Magnesium recovery from desalination reject brine as pretreatment for membraneless electrolysis. Desalination 2022; 525(Nov): 115489.
- 19. Ma X, Li M, Feng C, He Z. Electrochemical nitrate removal with simultaneous magnesium recovery from a mimicked RO brine assisted by in situ chloride ions. Journal of Hazardous Materials 2020; 388(Jan.): 122085.
- 20. Amrulloh H, Kurniawan YS, Ichsan C, Jelita J, Simanjuntak W, Situmeang RTM, Krisbiantoro PA. Highly efficient removal of Pb(II) and Cd(II) ions using magnesium hydroxide nanostructure prepared from seawater bittern by electrochemical method. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021; 631(Oct.): 127687.
- 21. Alebrahim MA, Ahmad AA, Alakhras LA, Al-Bataineh QM. Magnesium-doped zinc oxide film for hydrogen production from wastewater. Materials Chemistry and Physics 2024; 320(May): 129440. https://doi.org/10.1016/j.matchemphys.2024.129440.
- 22. Guo L, Yin H, Li W, Wang S, Du K, Shi H, Wang X, Wang D. Liquid-metal-electrode-assisted electrolysis for the production of sodium and magnesium. Journal of Magnesium and Alloys 2024; 1–13. https://doi.org/10.1016/j.jma.2024.01.028.
- 23. Choi WY, Aravena C, Park J, Kang D, Yoo Y. Performance prediction and evaluation of CO2 utilization with conjoined electrolysis and carbonation using desalinated rejected seawater brine. Desalination 2021; 509(Feb.): 115068.
- 24. Cai Y, Han Z, Lin X, Du J, Lei Z, Ye Z, Zhu J. Mechanisms of releasing magnesium ions from a magnesium anode in an electrolysis reactor with struvite precipitation. Journal of Environmental Chemical Engineering 2022; 10(1): 106661.
- 25. Díaz Nieto CH, Mata MA, Palacios CJO, Palacios NA, Torres WR, Vera ML, Flexer V. Transmembrane fluxes during electrolysis in high salinity brines: Effects on lithium and other raw materials recovery. Electrochimica Acta 2023; 454(March): 8–10.
- 26. Li L, Nakajima H, Moriyama A, Ito K. Theoretical analysis of the effect of boiling on the electrolysis voltage of a polymer electrolyte membrane water electrolyzer (PEMWE). Journal of Power Sources 2023; 575(May).
- 27. Lalia BS, Khalil A, Hashaikeh R. Selective electrochemical separation and recovery of calcium and magnesium from brine. Separation and Purification Technology 2021; 264(Dec.): 118416.
- 28. Zhang G, Yan Z, Liu Q, Lu G. Multi-objective optimization strategy for multipolar magnesium electrolysis cell based on thermal-electric model. Chemical Engineering Journal 2024; 490(Jan.): 151690. https://doi.org/10.1016/j.cej.2024.151690.
- 29. Lattieff FA, Majdi HS, Jweeg MJ, Al-Qrimli FAM. Improvements in hydrogen evolution through a new design of coupling inexpensive nanocomposite electrocatalysts driven by high-voltage electrolysis. Chemical Engineering Research and Design 2023; 196: 468–82.
- 30. Contreras M, Mba-Wright M, Wulf C, Stanier CO, Mubeen S. Technoeconomic analysis of photoelectrochemical hydrogen production from desalination waste brine using concentrated solar flux. International Journal of Hydrogen Energy 2023; 49: 360–72.
- 31. Kowthaman CN, Senthil Kumar P, Arul Mozhi Selvan V. Micro-patterned graphite electrodes: An analysis and optimization of process parameters on hydrogen evolution in water electrolysis. Fuel 2021; 305(Aug.): 121542. https://doi.org/10.1016/j.fuel.2021.121542.
- 32. Abdollahi Asl M, Tahvildari K, Bigdeli T. Ecofriendly synthesis of biodiesel from WCO by using electrolysis technique with graphite electrodes. Fuel 2020; 270(Jan.): 117582. https://doi.org/10.1016/j.fuel.2020.117582.
- 33. Jang D, Cho HS, Lee S, Park M, Kim S, Park H, Kang S. Investigation of the operation characteristics and optimization of an alkaline water electrolysis system at high temperature and a high current density. Journal of Cleaner Production 2023; 424(Aug.): 138862. https://doi.org/10.1016/j.jclepro.2023.138862.
- 34. Bouazza A, Ait Hak S, Faddouli A, Khaless K, Benhida R. Kainite crystallization from RO bittern: A novel approach using discontinuous evaporation. Desalination 2024; 582(Feb.): 117652. https://doi.org/10.1016/j.desal.2024.117652
- 35. Díaz Nieto CH, Kortsarz JA, Vera ML, Flexer V. Effect of temperature, current density and mass transport during the electrolytic removal of magnesium ions from lithium rich brines. Desalination 2022; 529(Nov.).
- 36. Irshad M, Siraj K, Raza R, Ali A, Tiwari P, Zhu B, Rafique A, Ali A, Ullah MK, Usman A. A brief description of high temperature solid oxide fuel cell’s operation, materials, design, fabrication technologies and performance. Applied Sciences (Switzerland) 2016; 6(3).
- 37. Han Z, Dong H, Wang H, Yang Y, Yu H, Yang Z. Temperature-dependent chemical incompatibility between NiO-YSZ anode and alkaline earth metal oxides: Implications for surface decoration of SOFC anode. Journal of Alloys and Compounds 2023; 968(June): 172150.
- 38. Battaglia G, Ventimiglia L, Vicari F, Tamburini A, Cipollina A, Micale G. Characterization of Mg(OH)2 powders produced from real saltworks bitterns at a pilot scale. Powder Technology 2024; 443(April): 119918. https://doi.org/10.1016/j.powtec.2024.119918.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d759d252-c036-4ec8-b157-21168878a9e9