PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Graphite Nanosheet Exfoliation From Graphite Flakes Through Functionalization Using Phthalic Acid

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Złuszczanie nanoarkuszy grafitu z płatków grafitu przy użyciu kwasu ftalowego
Języki publikacji
EN
Abstrakty
EN
In order to fabricate graphite nanosheets from graphite flakes, edge-functionalized graphite nanosheets were prepared by a functionalization method using phthalic acid as the molecule to be grafted. A polyphosphoric acid/P2O5 solution containing graphite and phthalic acid were heated at different temperatures for 72 h in a nitrogen atmosphere. It was confirmed by transmission electron microscopy and atomic force microscopy that the resultant phthalic acid-functionalized graphite nanosheets had a large surface area of 20.69 μm2 in average and an average thickness of 1.39 nm. It was also found by X-ray diffractometry and Fourier transform infrared spectroscopy (FT-IR) analysis that the functionalization caused the formation of C=O bonds at the edges of the graphite nanosheets. The yield from this functionalization method was found to be dependent on the reaction temperature, only when it is between 70 and 130°C, because of the dehydration of phthalic acid at higher temperatures. This was confirmed by FT-IR analysis and the observation of low thermal energies at low temperatures.
Twórcy
autor
  • Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 139-743, Korea
autor
  • Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 139-743, Korea
Bibliografia
  • [1] Y. Song, Z. Yanmin, D. Gao, J. Guo, H. S. Kim, J. Kor. Powd. Met. Inst. 20, 332 (2013).
  • [2] R. M. German, J. Kor. Powd. Met. Inst. 20, 85 (2013).
  • [3] J. Li, M .L. Sham, J.-K. Kim, G. Marom, Compos. Sci. Technol. 67, 296 (2007).
  • [4] L. M. Viculis, J. J. Mack, O. M. Mayer, H. T. Hahn, R. B. Kaner, J. Mater. Chem. 15, 974 (2005).
  • [5] F. C. Fim, J. M. Guterres, N. R. S. Basso, G. B. Galland, J. Polym. Sci., Part A: Polym. Chem. 48, 692 (2010).
  • [6] K. Kalaitzidou, H. Fukushima, L. T. Drzal, Carbon, 45, 1446 (2007).
  • [7] S. Gupta, P. R. Manetena, J. Reinf. Plast. Compos. 29, 2037 (2010).
  • [8] D. Cho, S. Lee, G. Yang, H. Fukushima, L. T. Drzal, Macromol. Mater. Eng. 290, 179 (2005).
  • [9] Y. C. Li, S. C. Tjong, R .K. Y. Li, Synth. Met. 160, 1912 (2010).
  • [10] B. Debelak, K. Lafdi, Carbon, 45, 1727 (2007).
  • [11] A. Mills, M. Farid, J. R. Selman, S. Al-Hallaj, Appl. Therm. Eng. 26, 1652 (2006).
  • [12] J. Li, J.-K. Kim, Compos. Sci. Technol. 67, 2114 (2007).
  • [13] A. Yu, P. Ramesh, M. E. Itkis, E. Bekyarova, R. C. Haddon, J. Phys. Chem. C 111, 7565 (2007).
  • [14] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 45, 1558 (2007).
  • [15] J. Shen, Y. Hu, C. Li, C. Qin, M. Ye, Small, 5, 82 (2009).
  • [16] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, T. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 306, 666 (2004).
  • [17] T. Wei, Z. Fan, G. Luo, C. Zheng, D. Xie, Carbon, 47, 313 (2008).
  • [18] S. Malik, A. Vijayaraghavan, R. Erni, K. Ariga, I. Khalakhan, J. P. Hill, Nanoscale 2, 2139 (2010).
  • [19] W. Gu, W. Zheng, X. Li, H. Zhu, J. Wei, Z. Li, Q. Shu, C. Wang, K. Wang, W. Shen, F. Kang, D. Wu, J. Mater. Chem. 19, 3367 (2009).
  • [20] W. Fu, J. Kiggans, S. H. Overbury, V. Schwartz, C. Liang, Chem. Commun. 47, 5265 (2011).
  • [21] A. Safavi, M. Tohidi, F. A. Mahyari, H. Chahbaazi, J. Mater. Chem. 22, 3825 (2012).
  • [22] C. Valles, C. Drummond, H. Saadaoui, C .A. Furtado, M. He, O. Roubeau, L. Ortolani, M. Monthioux, A. Penicaud, J. Am. Chem. Soc. 130, 15802 (2008).
  • [23] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Btrne, Y. K. Gunko, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, J. N. Coleman, Nat. Nanotechnol. 3, 563 (2008).
  • [24] D. A. Heller, P .W. Barone, M. S. Strano, Carbon 43, 651 (2005).
  • [25] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K .M. Kolhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006).
  • [26] W. Qian, R. Hao, Y. Hou, Y. Tian, C. Shen, H. Gao, X. Liang, Nano Res. 2, 706 (2009).
  • [27] S. Stankovich, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Carbon 44, 3342 (2006).
  • [28] E.-K. Choi, I.-Y. Jeon, S.-Y. Bae, H.-J. Lee, H. S. Shin, L. Dai, J.-B. Baek, Chem. Commun. 46, 6320 (2010).
  • [29] D. W. Chang, H.-J. Choi, I.-Y. Jeon, J.-B. Baek, Chem. Rec. 13, 224 (2013).
  • [30] J.-S. Park, M.-H. Lee, I.-Y. Jeon, H.-S. Park, J.-B. Baek, H.-K. Song, ACS Nano 6, 10770 (2012).
  • [31] H.-J. Lee, S.-J. Oh, J.-Y. Choi, J. W. Kim, J. Han, L.-S. Tan, J.-B. Baek, Chem. Mater. 17, 5057 (2005).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7598dee-25be-4b61-9f5b-8cd724a0aac9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.