Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Bis(8-hydroxyquinoline) zinc dispersed in a poly(N-vinylcarbazole) matrix (Znq₂:PVK) was characterised for its possible use as an active layer in organic light-emitting diodes. The composition and morphology of Znq₂:PVK thin films deposited on quartz substrates was analysed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and confocal microscopy. Optical properties of the films were characterised by absorption spectroscopy and photoluminescence and explained on the basis of calculated molecular properties of gas phase Znq₂, N-vinylcarbazole pentamer, and molecular models for the Znq₂:PVK interface. FTIR measurements of the Znq₂:PVK film revealed the presence of water, likely due to the formation of Znq₂-dihydrate during the fabrication process. Water could be removed by annealing films at 130 °C for 1 h and the annealed films showed better photoluminescence in the Znq₂ emission region. Finally, two diodes with an ITO/PEDOT:PSS/Znq2:PVK/Al structure were fabricated, where in the second one, the ITO/PEDOT:PSS/Znq₂:PVK layers were annealed at 130 °C. The first diode was characterised by a maximum brightness of about 83 cd/m² and a current efficiency of 0.12 cd/A, while the diode whose structure was annealed had a maximum brightness of about 219 cd/m² and a current efficiency of 0.26 cd/A.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e154747
Opis fizyczny
Bibliogr. 44 poz., rys., wykr.
Twórcy
autor
- Division of Surface Science, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, Toruń 87-100, Poland
autor
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, Toruń 87-100, Poland
autor
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, ul. Gagarina 7, Toruń 87-100, Poland
autor
- Department of Physics, Cracow University of Technology, ul. Podchorążych 1, 30-084 Kraków, Poland
autor
- Department of Physics, Cracow University of Technology, ul. Podchorążych 1, 30-084 Kraków, Poland
autor
- Department of Physics, Kazimierz Wielki University in Bydgoszcz, ul. Powstańców Wielkopolskich 2, 85-090 Bydgoszcz, Poland
autor
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, ul. Gagarina 7, Toruń 87-100, Poland
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, Toruń 87-100, Poland
Bibliografia
- [1] Tsuboi, T. & Torii, Y. Selective synthesis of facial and meridional isomers of Alq₃. Mol. Cryst. Liq. Cryst. 529, 42-52 (2010). https://doi.org/10.1080/15421406.2010.495672.
- [2] Painuly, D., Masram, D. T., Rabanal, M. E. & Nagpure, I. M. The effect of ethanol on structural, morphological and optical properties of Li(I) 8-hydroxyquinoline phosphor. J. Lumin. 192, 1180-1190 (2017). https://doi.org/10.1016/j.jlumin.2017.08.054.
- [3] Painuly, D., Singhal, R., Kandwal, P. & Nagpure, I .M. Structural, optical and decay properties of zinc(II) 8-hydroxyquinoline and its thin film. J. Electron. Mater. 49, 6096-6106 (2020). https://doi.org/10.1007/s11664-020-08255-y.
- [4] Pérez-Bolivar, C. P., Takizawa, S., Nishimura, G., Montes, V. A. & Anzenbacher, P. Jr. High-efficiency tris(8-hydroxyquinoline) aluminum (Alq3) complexes for organic white-light-emitting diodes and solid-state lighting. Chem. Eur. J. 17, 9076-9082 (2011). https://doi.org/10.1002/chem.201100707.
- [5] Painuly, D. et al. Phase stability and transformation of the α to ε-phase of Alq₃ phosphor after thermal treatment and their photo-physical properties. J. Phys. Chem. Solids 121, 396-408 (2018). https://doi.org/10.1016/j.jpcs.2018.05.035.
- [6] Hamada, Y. at al. Organic electroluminescent devices with 8-hydroxyquinoline derivative-metal complexes as an emitter. Jpn. J. Appl. Phys. 32, 514 (1993). https://doi.org/10.1143/JJAP.32.L514.
- [7] Ghedini, M., Deda, M. L., Aiello, I. & Grisolia, A. Fine-tuning the luminescent properties of metal-chelating 8-hydroxyquinolines through amido substituents in 5-position. Inorg. Chim. Acta 357, 33-40 (2004). https://doi.org/10.1016/S0020-1693(03)00427-4.
- [8] Sapochak, L. S. et al. Electroluminescent zinc(II) bis(8-hydroxyquinoline): Structural effects on electronic states and device performance. J. Am. Chem. Soc. 124, 6119-6125 (2002). https://doi.org/10.1021/ja0201909.
- [9] Donze, N., Pechy, P., Gratzel, M., Schaer, M. & Zuppiroli, L. Quinolinate zinc complexes as electron transporting layers in organic light-emitting diodes. Chem. Phys. Lett. 315, 405-410 (1999). https://doi.org/10.1016/S0009-2614(99)01272-5.
- [10] Du, N., Mei, Q. & Lu, M. Quinolinate aluminum and zinc complexes with multi-methyl methacrylate end groups: Synthesis, photoluminescence, and electroluminescence characterization. Synth. Metals 149, 193-197 (2005). https://doi.org/10.1016/j.synthmet.2005.01.001.
- [11] Giro, G. et al. The role played by cell configuration and layer preparation in LEDs based on hydroxyquinoline metal complexes and a triphenyl-diamine derivative (TPD). Synth. Met. 102, 1018-1019 (1999). https://doi.org/10.1016/S0379-6779(98)01268-5.
- [12] Hopkins, T. A. Substituted aluminum and zinc quinolates with blue-shifted absorbance/luminescence bands: Synthesis and spectro-scopic, photoluminescence, and electroluminescence characteriza-tion. Chem. Mater. 8, 344-351 (1996). https://doi.org/10.1021/cm9503442.
- [13] Sapochak, L. S. et al. Effects of systematic methyl substitution of metal (III) tris(n-Methyl-8-Quinolinolato) chelates on material properties for optimum electroluminescence device performance. J. Am. Chem. Soc. 123, 6300-6307 (2001). https://doi.org/10.1021/ja010120m.
- [14] Shukla, V. K. & Kumar, S. Conversion of a green light emitting zinc-quinolate complex thin film to a stable and highly packed blue emitter film. Synth. Met. 160, 450-454 (2010). https://doi.org/10.1016/j.synthmet.2009.11.030.
- [15] Painuly, D. et al. The modification in the photo-physical properties via transformation of synthetic dihydrated Znq2 to anhydrous (Znq2)4 tetramer by sublimation process. Opt. Mater. 82, 175-189 (2018). https://doi.org/10.1016/j.optmat.2018.04.044.
- [16] Jafari, F., Elahi, S. M. & Jafari, M. R. A facile synthesis and opto-electronic characterization of Znq₂ and Alq₃ nano-complexes. Appl. Phys. A 124, 574 (2018). https://doi.org/10.1007/s00339-018-1978-6.
- [17] Rawat, M., Prakash, S., Singh, C. & Anand, R. S. Synthesis and study of chemical and photo‐physical properties of quinolinate aluminum and zinc complexes in organic light emitting diodes (OLEDs). AIP Conf. Proc. 1391, 187-189 (2011). https://doi.org/10.1063/1.3646819.
- [18] Lim, H. et al. Polymeric light-emitting diodes utilizing TPD-dispersed polyimide thin film and organometallic complex. Proc. SPIE 3281, Polymer Photonic Devices (1998). https://doi.org/10.1117/12.305439.
- [19] Sano, T. et al. Design of conjugated molecular materials for optoelectronics. J. Mater. Chem. 10, 157-161 (2000). https://doi.org/10.1039/A903239H.
- [20] Sypniewska, M. et al. Tris(8-hydroxyquinoline)aluminium in a polymer matrix as an active layer for green OLED applications. Opto-Electron. Rev. 31, e146105 (2023). https://doi.org/10.24425/opelre.2023.146105.
- [21] Frisch, M. J. et al. Gaussian 16, Rev. C.01. (Gaussian, Inc., Wallingford CT, 2016).
- [22] Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615-6620 (2008). https://doi.org/10.1039/B810189B.
- [23] Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297-3305 (2005). https://doi.org/10.1039/B508541A.
- [24] Bannewart, C., Ehlert, C. & Grimme, S. GFN2-xTB - An acurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput. 15, 1652-1671 (2019). https://doi.org/10.1021/acs.jctc.8b01176.
- [25] Le Bahers, T., Adamo, C. & Ciofini, I. A qualitative index of spatial extent in charge-transfer excitations. J. Chem. Theory Comput. 7, 2498-2506 (2011). https://doi.org/10.1021/ct200308m.
- [26] Boto, R. A. et al. NCIPLOT4: A New Step Towards a Fast Quantification of Noncovalent Interactions. ChemRxiv. https://doi.org/10.26434/chemrxiv.9831536.v1 (2019).
- [27] Johnson, E. R. et al. Revealing noncovalent interactions. J. Am. Chem. Soc. 132, 6498-6506 (2010). https://doi.org/10.1021/ja100936w.
- [28] Contreras-Garcia, J. et al. NCIPLOT: A Program for Plotting Noncovalent Interaction Regions. J. Chem. Theory Comput. 7, 625-632 (2011). https://doi.org/10.1021/ct100641a.
- [29] Barbosa de Brito, E. B., de Morais, A., Nei de Freitas, J., Valaski, R. & de Fátima Vieira Marques, M. Improved properties of high molar mass poly(9-vinylcarbazole) and performance as a light emitter compared with the commercial PVK. Mater. Sci. Eng. B 286, 116020 (2022). https://doi.org/10.1016/j.mseb.2022.116020.
- [30] Shahedi, Z., Jafari, M. R. & Zolanvari, A. A., Synthesis of ZnQ2, CaQ2, and CdQ2 for application in OLED: Optical, thermal, and electrical characterizations. J. Mater. Sci. Mater. Electron. 28, 7313-7319 (2017). https://doi.org/10.1007/s10854-017-6417-5.
- [31] Hien, N. at al. Synthesis, structure, photophysical properties and DFT investigation of novel Zn (II) complexes bearing π-extended 8-hydroxyquinoline-derived ligands. J. Mol. Struct. 1311, 138464 (2024). https://doi.org/10.1016/j.molstruc.2024.138464.
- [32] Knysh, I. at al. Reference CC3 excitation energies for organic chromophores: benchmarking TD-DFT, BSE/GW and wave function methods. J. Chem. Theory Comput. 20, 8152-8174 (2024). https://doi.org/10.1021/acs.jctc.4c00906
- [33] Jafari, F., Elahi, S. M. & Jafari, M. R. A facile synthesis and optoelectronic characterization of Znq2 and Alq3 nano-complexes. Appl. Phys. A 124, 574 (2018). https://doi.org/10.1007/s00339-018-1978-6.
- [34] Thinh, P. X., Basavaraja, C., Kim, D. G. & Huh, D. S. Characterization and electrochemical behaviors of honeycomb-patterned poly(N-vinylcarbazole)/polystyrene composite films. Polym. Bull. 69, 81-94 (2012). https://doi.org/10.1007/s00289-012-0727-9.
- [35] Hosseini, S. M., Jashni, E., Jafari, M. R., Van der Bruggen, B. & Shahedi, Z. Nanocomposite polyvinyl chloride-based heterogeneous cation exchange membrane prepared by synthesized ZnQ2 nanoparticles: Ionic behavior and morphological characterization. J. Membr. Sci. 560, 1-10 (2018). https://doi.org/10.1016/j.memsci.2018.05.007.
- [36] Bakhshipour, S., Shahedi, Z., Mirahmadi, F., Fereidonnejad, R. & Hesani, M. Effect of different in situ temperatures on the crystallinity and optical properties of green synthesized 8-hydroxyquinoline zinc by saffron extract, Opt. Contin. 1, 1401-1412 (2022). https://doi.org/10.1364/OPTCON.459222.
- [37] Hu, B.-s., X. et al. The effects of crystal structure on optical absorption/photoluminescence of bis (8-hydroxyquinoline) zinc. Solid State Commun. 136, 318-322 (2005). https://doi.org/10.1016/j.ssc.2005.08.021.
- [38] Kong, F., Liu, J., Li, X. F., An, Y. & Qiu, T. Enhanced emission from Alq3 in PVK/Alq3 blend films based on resonance energy transfer. J. Polym. Sci. B: Polym. Phys. 47, 1772-1777 (2009). https://doi.org/10.1002/polb.21779.
- [39] Fan, Y. et al. Hydrothermal in-situ growth of tris(8-hydroxy-quinolate) aluminum nanorods thin films. Thin Solid Films 519, 7659-7663 (2011). https://doi.org/10.1016/j.tsf.2011.05.015.
- [40] Popielarski, P., Mosinska, L., Zorenko, T. & Zorenko, Y. Luminescence of tris(8-hydroxyquinoline) aluminium thin films under synchrotron radiation excitation. J. Lumin. 261, 119930 (2023). https://doi.org/10.1016/j.jlumin.2023.119930.
- [41] Zhao, Y. S. et al. Photoluminescence and electroluminescence from tris(8‐hydroxyquinoline) aluminum nanowires prepared by adsorbent‐assisted physical vapor deposition. Adv. Funct. Mater. 16, 1985-1991 (2006). https://doi.org/10.1002/adfm.200600070.
- [42] Sypniewska, M. et al. Organic LEDs based on bis(8-hydroxyquinoline)zinc derivatives with a styryl group. Molecules 28, 7435 (2023). https://doi.org/10.3390/molecules28217435.
- [43] Burlov, A. S. et al. Synthesis, structure, photo-and electro-luminescent properties of methyl-and alkoxy-substituted 4-methyl-N-[2-(phenyliminomethyl) phenyl] benzenesulfamides and their zinc (II) complexes. Opt. Mater. 157, 116412 (2024). https://doi.org/10.1016/j.optmat.2024.116412.
- [44] Moraes, E. S. et al. Zinc (ii)-heteroligand compounds for wet processing OLEDs: a study on balancing charge carrier transport and energy transfer. Mater. Adv. 5, 7778-7788 (2024). https://doi.org/10.1039/d4ma00581c.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7561b9a-6790-47f8-b94a-a593b1932fdd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.