PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dielectric relaxation and study of electrical conduction mechanism in BaZr0.1Ti0.9O3 ceramics by correlated barrier hopping model

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work aims to study the electrical conduction mechanism in the dielectric material BaZr0.1Ti0.9 O3 (BZT) ceramics by applying AC signal in the frequency range of 102 Hz to 106 Hz. The phase purity and microstructure of the sample have been studied by X-ray diffraction refinement and field-emission scanning electron microscope (FE-SEM) analysis. The appearance of resonance peaks in the loss tangent at high temperature is due to inherent dielectric relaxation processes of this oxide. The temperature dependent Cole-Cole plot has been studied in details to determine both the grain and grain boundary contribution to the conductivity. Electrical modulus analysis reveals that the hopping of charge carriers is the most probable conduction mechanism in BZT ceramics. The obtained data of AC conductivity obey the universal double power law and have been discussed in terms of microstructural network characteristics. The behavior of frequency exponent n of AC conductivity as a function of temperature verify the applicability of the correlated barrier hopping (CBH) model. The AC conductivity data are used to estimate the minimum hopping length, density of states at Fermi level, thermal conductivity and apparent activation energy. The value of activation energy confirms that the oxygen vacancies play a vital role in the conduction mechanism.
Wydawca
Rocznik
Strony
112--122
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • Functional Ceramics Laboratory, Department of Applied Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, India
autor
  • Department of Physics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata-700009, India
autor
  • Department of Physics, Bose Institute, 93/1, Acharya Prafulla Chandra Road, Kolkata-700009, India
autor
  • Functional Ceramics Laboratory, Department of Applied Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, India
Bibliografia
  • [1] LEE W.H., SU C.Y., J. Am. Ceram. Soc., 90 (2007), 3345.
  • [2] OHARA Y., KOUMOTO K., YANAGIDA H., J. Am. Ceram. Soc., 68 (1985), 108.
  • [3] PARK J.H., KAWAKAMI Y., SUZUKI M., AKEDO J., Jpn. J. Appl. Phys., 50 (2011), 09ND19.
  • [4] TANG P., TOWNER D.J., MEIER A.L., WESSELS B.W., Appl. Phys. Lett., 85 (2004), 4615.
  • [5] FARHI R., MARSSI M., SIMON A., RAVEZ J., Eur. Phys. J. B., 9 (1999), 599.
  • [6] DELUCA M., VASILESCU C.A., IANCULESCU A.C., BERGER D.C., CIOMAGA C.E., CURECHERIU L.P., STOLERIU L., GAJOVIC A., MITOSERIU L., GALASSI C., J. Eur. Ceram. Soc., 32 (2012), 3551.
  • [7] TANG X.G., CHEW K.H., CHAN H.L.W., Acta. Mater., 52 (2004), 5177.
  • [8] MOURA F., SIMÕES A.Z., AGUIAR E.C., NOGUEIRA I.C., ZAGHETE M.A., VARELA J.A., LONGO E., J. Alloy. Compd., 479 (2009), 280.
  • [9] BHASKAR R.S., PRASAD R.K., RAMACHANDRA R.M.S., J. Alloy. Compd., 509 (2011), 1266.
  • [10] BHASKAR R.S., PRASAD R.K., RAMACHANDRA R.M.S., J. Alloy. Compd., 481 (2009), 692.
  • [11] SATEESH P., OMPRAKASH J., KUMAR G.S., PRASAD G., J. Adv. Dielectr., 5 (2015), 1550002.
  • [12] NATH K.A., PRASAD K., Adv. Mater. Res., 2 (2012), 115.
  • [13] KANG B.S., CHOI S.K., PARK C.H., J. Appl. Phys., 94 (2003), 1904.
  • [14] ANG C., YU Z., CROSS L.E., Phys. Rev. B., 62 (2000), 228.
  • [15] RODRIGUEZ-CARVAJAL J., An introduction to the program FullProf 2000, Laboratoire Léon Brillouin (CEACNRS) CEA/Saclay, France, 2001.
  • [16] FERRARI M., LUTTEROTTI L., J. Appl. Phys., 76 (1994), 7246.
  • [17] HSIAO Y.J., CHANG Y.H., FANG T.H., CHANG Y.S., Appl. Phys. Lett., 87 (2005), 142906.
  • [18] JAWAHAR K., CHOUDHARY R.N.P., Solid State Commun., 142 (2007), 449.
  • [19] PRASAD A., BASU A., Mater. Lett., 66 (2012), 1.
  • [20] DUTTA A., BHARTI C., SINHA T.P., Mater. Res. Bull., 43 (2008), 1246.
  • [21] FUNKE K., Prog. Solid State Chem., 22 (1993), 111.
  • [22] JONSCHER A.K., Nature, 267 (1977), 673.
  • [23] CHEN W., ZHU W., TAN O.K., CHEN X.F., J. Appl. Phys., 108 (2010), 034101.
  • [24] PELAIZ-BARRANCO A., GUTIERREZ-AMADOR M.P., HUANOSTA A., VALENZUELA R., Appl. Phys. Lett., 73 (1998), 2039.
  • [25] ALMOND D.P., BOWEN C.R., Phys. Rev. Lett., 92 (2004), 157601.
  • [26] ISHII T., ABE T., SHIRAI H., Solid State Commun., 127 (2003), 737.
  • [27] ELLIOTT S.R., Adv. Phys., 36 (1987), 135.
  • [28] YOUSSEF A.A.A., Z. Naturforsch., 57a (2002), 263.
  • [29] LONG A.R., Adv. Phys., 31 (1982), 553.
  • [30] IMRAN Z., RAFIQ M.A., AHMAD M., RASOOL K., BATOOL S.S., HASAN M.M., AIP Adv., 3 (2013), 032146.
  • [31] PRASAD K., BHAGAT S., AMARNATH K., CHOUDHARYS.N., YADAV K.L., Mater. Sci.-Poland, 28 (2010), 317.
  • [32] SUBOHI O., KUMAR G.S., MALIK M.M., KURCHANIA R., J. Mater. Sci.-Mater. Electron., 26 (2015), 9342.
  • [33] JONSCHER A.K., J. Mater. Sci., 16 (1981), 2037.
  • [34] VERDIER C., MORRISON F.D., LUPASCU D.C., SCOTT J.F., J. Appl. Phys., 97 (2005), 024107.
  • [35] SMYTH D.M., J. Electroceram., 11 (2003), 89.
  • [36] MOOS R., HÄRDTL K.H., J. Appl. Phys., 80 (1996), 393.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d754bffe-9c8c-49a5-852d-c24c3deb4b33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.