Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The study assessed the changing of Ra, Rp, Rv and Rz roughness parameters of the sanded beech surface (Fagus sylvatica L.) as a function of different grit sizes and different measurement direction. The milled samples were ground with a belt sander BS-75 E-set from Festool with belt grit P60, P100 and P150. The sanding belts were Rubin 2 from Festool. Roughness was evaluated using a Keyence VHX-7000 digital microscope. The evaluation length of the roughness measurement was 12.5 mm (λc = 2.5 mm and λs = 8 mm). The R-parameters were measured in accordance with the latest standards ISO 21920 (2022) in the direction parallel to the grain, and in the direction perpendicular to the grain (profile). The paper proves the theoretical assumptions about the reduction of R-parameter values. The measurements showed that the sanded surface was less rough in the direction perpendicular to the grain at P150 sanding belt grit and in the grain direction at P100 grit.
W pracy oceniono zmianę parametrów chropowatości Ra, Rp, Rv i Rz szlifowanej powierzchni buka (Fagus sylvatica L.) w funkcji różnej wielkości ziarna i kierunku pomiaru. Zmielone próbki szlifowano szlifierką taśmową BS-75 E-set firmy Festool o ziarnistościach taśmowych P60, P100 i P150. Taśmy szlifierskie to Rubin 2 firmy Festool. Chropowatość oceniano przy użyciu mikroskopu cyfrowego Keyence VHX-7000. Długość ewaluacyjna pomiaru chropowatości wynosiła 12,5 mm (λc = 2,5 mm i λs = 8 mm). Parametry R zostały zmierzone zgodnie z najnowszymi normami ISO 21920 (2022) w kierunku równoległym do włókien oraz w kierunku prostopadłym do włókien (profil). Artykuł potwierdza teoretyczne założenia dotyczące redukcji wartości parametru R. Pomiary wykazały, że szlifowana powierzchnia była mniej chropowata w kierunku prostopadłym do włókien przy ziarnistości taśmy ściernej P150 oraz w kierunku włókien przy ziarnistości P100.
Słowa kluczowe
Rocznik
Tom
Strony
51--60
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
- Faculty of Wood Sciences and Technology, Technical University in Zvolen, 960 01 Zvolen, Slovakia,
autor
- Faculty of Wood Sciences and Technology, Technical University in Zvolen, 960 01 Zvolen, Slovakia,,
autor
- Faculty of Wood Sciences and Technology, Technical University in Zvolen, 960 01 Zvolen, Slovakia,
autor
- Faculty of Wood Sciences and Technology, Technical University in Zvolen, 960 01 Zvolen, Slovakia,
Bibliografia
- 1. Aslan, S., Coşkun, H., Kilic, M., 2008. The effect of the cutting direction, number of blades and grain size of the abrasives on surface roughness of Taurus cedar (Cedrus Libani A. Rich) woods. In Building and Environment. 43(5), 696-701. http://dx.doi.org/ 10.1016/j.buildenv.2007.01.048.
- 2. Cota, H., Dritan, A., Habipi, B., 2017. The influence of machining process on wood surface roughness. In Agricultural Sciences. 16(7), 277-283.
- 3. Demirci, S., 2019. Determination of the Effect of Cutting Direction and Grit Sizes of the Abrasive on Surface Roughness of Scotch Pine (Pinus sylvestris L.) and Oriental Beech (Fagus orientalis L.) Woods. In Kastamonu University Journal of Forestry Faculty. 19(2), 197-205. https://www.doi.org /10.17475/kastorman.626270Gurau, L., 2013. Analyses of roughness of sanded oak and beech surface. In PRO LIGNO. 9(4), 741-750. ISSN-L 1841-4737.
- 4. Gaff, M. and Kaplan, L. 2016. The influence of feed and cutting speed on machining quality. Drevársky magazín. Banská Bystrica: Trendwood – twd, s.r.o., 16(3), 3-4. ISSN 1338-3701.
- 5. Gurau, L., Csiha, C. & Mansfield-Williams, H. 2015. Processing roughness of sanded beech surfaces. In Eur. J. Wood Prod. 73, 395–398. https://doi.org/10.1007/s00107-015-0899-8.
- 6. Gurau, L., Irle, M., Buchner, J., 2019. Surface roughness of heat treated and untreated beech (Fagus sylvatica L.) wood after sanding. In BioResources. 14(2), 4512-4531. https://www.doi.org /10.15376/biores.14.2.4512-4531.
- 7. Gurau, L., Mansfield-Williams, H., Irle, M. 2005. The influence of wood anatomy on evaluating the roughness of sanded solid wood. In Journal of the Institute of Wood Science. 17(2), 65-74. https://www.doi.org/10.1179/wsc.2005.17.2.65.
- 8. Kaplan, L., Kvietková, M., Sikora, A., Sedlecký, M. 2018b. Evaluation of the effect of individual paramaters of oak wood machining and their impact on the values of waviness measured by a laser profilometer. In Wood Research. 63 (1), 127-140. ISSN 2729-8906.
- 9. Kaplan, L., Sedlecký, M., Kvietková, M., Sikora, A. 2018a. The Effect of Thermal Modification of Oak Wood on Waviness Values in the Planar Milling Process, Monitored with a Contact Method.
- 10. Kilic, M., Hiziroglu, S., Burdurlu, E., 2006. Effect of machining on surface roughness of wood. In Building and Environment. 41(8), 1074-1078. https://www.doi.org /10.1016/j.buildenv.2005.05.008.
- 11. Kminiak, R. 2014. Effect of the saw blade construction on the surface quality when transverse sawing spruce lumber on crosscut miter saw. In Acta Facultatis Xylologiae Zvolen. 56 (2), 87-96. ISSN 1336-3824.
- 12. Kubš, J., Gaff, M., Barcík, Š. 2016. Factors affecting the consumption of energy during the of thermally modified and unmodified beech wood. In BioResources. 11(1), 736-60 747 https://www.doi.org/10.15376/biores.11.1.736-747.
- 13. Kúdela, J., Mrenica, L., Javorek, Ľ., 2018. The influence of milling and sanding on wood surface morphology. In Acta Facultatis Xylologiae Zvolen. Zvolen, 60(1), 71-83. https://www.doi.org/10.17423/afx.2018.60.1.08.
- 14. Kvietková, M., Gaff, M., Gašparík, M., Kaplan, L., Barcík, Š. 2015a. Surface quality of milled birch wood after thermal treatment at various temperatures. In BioResources. 10(4), 6512-6521. https://www.doi.org/10.15376/biores.10.4.6512-6521.
- 15. Kvietková, M., Gašparík, M., Gaff, M. 2015b. Effect of thermal treatment on surface quality of beech wood after plane milling. In BioResources. 10(3), 4226-4238. https://www.doi.org/10.15376/biores.10.3.4226-4238.
- 16. Magoss, E. 2008. General regularities of wood surface roughness. In Acta Silv Lign Hung. 4, 81-93, ISSN 1787064X.
- 17. Sandak, J. and Negri, M., 2005. Wood surface roughness- What is it?. In Proceedings of the 17th International Wood Machining Seminar (IWMS 17). Rosenheim. 242-250.
- 18. STN EN ISO 21920-2, 2022. Geometrical product specifications (GPS) - Surface texture: Profile - Part 2: Terms, definitions and surface texture parameters (ISO 21920-2:2021).
- 19. STN EN ISO 21920-3, 2022. Geometrical product specifications (GPS) - Surface texture: Profile - Part 3: Specification operators (ISO 21920-3:2021).
- 20. STN EN ISO 4287, 1999. Geometrical Product Specifications (GPS). Surface texture: Profile method - Terms, definitions and surface texture parameters.
- 21. Zhong, Z.W., Hiziroglu, S., Chan, C. 2013. Measurement of the surface roughness of wood based materials used in furniture manufacture. In Measurement. 46, 1482–1487. https://www.doi.org/10.1016/j.measurement.2012.11.041.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d749a430-da17-4812-aedc-3cc74fc9c280