PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Abstract Boundedness and the Stability of the Pexider Equation

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
X Polish-Czech Mathematical School (10 ; 04-07.06.2003 ; Poraj near Częstochowa, Poland)
Języki publikacji
EN
Abstrakty
EN
Let (S, +) be a semigroup (not necessarily Abelian) and let (X,+) be a commutative group. We deal with an axiomatically given family B ⸦ 2x of "bounded sets" and with mappings f, g, h : S → X such that the transformation S x S ∋ (x, y) → f (x + y) - g (x) - h (y) ∈ X remains B-bounded. Stability results existing in the literature in connection with the Pexider functional equation become special cases of our theorems up to the magnitude of approximating constants.
Twórcy
autor
  • Institute of Mathematics and Computer Science, Pedagogical University of Częstochowa, al. Armii Krajowej 13/15, 42-201 Częstochowa, Poland
Bibliografia
  • [1] J. Aczél, Lectures on Functional Equations and Their Applications, Academic Press, New York, 1966.
  • [2] J. Aczél, J. Dhombres, Some Aspects oj Functional Equations, Cambridge Univ. Press, Cambridge, 1989.
  • [3] J. Aczél, A simple Functional equations method applied to several problems in the social sciences, Talk presented at the Silesian University of Katowice (Poland), April 10, 1992 .
  • [4] R. Ger, Abstract boundedness and the stability of the Pexider equation, Talk presented at the 31-st International Symposium on Functional Equations, August 22 - 28, 1993, Debrecen (Hungary); Report of Meeting: Aequationes Math. 47, 275, 1994.
  • [5] E. Głowacki, Z. Kominek, On stability of the Pexider equation on semigroups, A Volume dedicated to D. H. Hyers & S. Ulam, Hadronic Press, Palm Harbor, FL, 111-116, 1994 .
  • [6] D. H. Hyers, G. Isac, Th. M. Rassias, Stability of Functional Equations Several Variables, Birkhäuser, Boston-Basel-Berlin , 1998.
  • [7] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality, PWN & Uniwersytet Śląski, Warszawa-Kraków-Katowice, 1985.
  • [8] K. Nikodem, The stability of the Pexider equation, Ann. Math. Sil. 5, 91-93, 1991.
  • [9] J. Tabor, Restricted stability of the Cauchy and the Pexider equations, Zeszyty Nauk. Politech. Śl., Ser. Mat.-Fiz. 64, 203-221, 1990.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d74852e9-d93e-467c-9253-40f7b45fc5ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.