PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of methodology on determining the liquid limits values of selected organic soils

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ metodyki oznaczania na wartości granicy płynności wybranych gruntów organicznych
Języki publikacji
EN
Abstrakty
EN
This paper discusses the use of the Casagrande Cup and Cone Penetrometer Methods for determining the liquid limit of selected organic soils in in the south-eastern region of Poland in laboratory conditions in accordance with the latest standard guidelines. 10 methods established on the basis of literature materials were used to interpret the test results: 4 for test in the Casagrande Cup and 6 for the Cone Penetrometer. The results were compared and used to determine the parameters necessary to assessment of consistency of all type of soils, e.g.: plasticity index IP (%), consistency index IC (–) or liquidity index IL (–). The knowledge of these parameters makes it possible to determine the degree of plasticity of the tested soils using the Cassagrande chart. The conducted research and analyses have shown that the results of determining the liquid limit using the selected methods are not always comparable. The application of calculation methods based on the results of laboratory tests organic soils carried out in accordance with the procedures of the one standard (PN-B-04481:1988), in the case of interpretation with Method No. 5 and Method No. 7, generated results with the widest range and the highest values in relation to the reference values (Method No. 1). In terms of the suitability of a given method, the type of tested soil, extremely complicated, diverse and heterogeneous structure turned out to be important, and most importantly, the content of organic parts, as evidenced by the results of consistency determination.
PL
W artykule zaprezentowano zastosowanie aparatu casagrande i metody penetrometru stożkowego do wyznaczania granicy płynności w warunkach laboratoryjnych zgodnie z najnowszymi wytycznymi normatywnymi wybranych gruntów organicznych pochodzących z południowo-wschodniej Polski. Do interpretacji wyników badań wykorzystano 10 metod wyselekcjonowanych na podstawie materiałów literaturowych: 4 do badań w aparacie casagrande i 6 dla penetrometru stożkowego. Wyniki zestawiono, porównano i wykorzystano do wyznaczenia parametrów niezbędnych do oceny konsystencji, np.: wskaźnika plastycznosci ip (%), wskaznika konsystencji ic (–) czy stopnia plastyczności il (–). Znajomość tych parametrów umożliwia określenie plastyczności badanych gruntów organicznych, bazując na normowym wykresie cassagrande. Przeprowadzone badania i analizy wykazały, że wyniki wyznaczania granicy płynności wybranymi metodami nie zawsze są porównywalne. Wykazano, że zastosowanie metod obliczeniowych opartych na wynikach badań laboratoryjnych wybranych gruntów organicznych przeprowadzonych zgodnie z procedurami normy PN-B-04481:1988, w przypadku interpretacji metodami nr 5 i 7, generowało wyniki o najszerszym zakresie i najwyższych wartościach w stosunku do wartości referencyjnych (metoda nr 1). Z perspektywy przydatności danej metody ważnym okazał się również rodzaj badanego gruntu organicznego, z uwagi na niezwykle skomplikowaną, różnorodną i niejednorodną strukturę, a przede wszystkim ilość i rodzaj substancji organicznej, o czym świadczą wyniki oznaczeń konsystencji.
Rocznik
Strony
459--477
Opis fizyczny
Bibliogr. 45 poz., il., tab.
Twórcy
  • Rzeszow University of Technology, Faculty of Civil and Environmental Engineering and Architecture Civil Engineering, Rzeszow, Poland
Bibliografia
  • [1] G. Straż, “Identification, marking and classification methods of organic soils according to Eurocode 7 and related standards”, Scientific Review Engineering and Environmental Sciences, 2018, vol. 27, no. 2, pp. 227-235, DOI: 10.22630/PNIKS.2018.27.2.22.
  • [2] G. Straż, “Preliminary investigations of organics soil in a new calibration chamber with the use of the FVT and DPL probe”, in E3S Web of Conferences (SOLINA 2018), 218, vol. 49, DOI: 10.1051/e3sconf/20184900109.
  • [3] M. Marut, G. Straż, “Verification of standard guidelines for organic matter content determination in organic soils by the loss on ignition method”, Geological Survey, 2016, vol. 64, pp. 918-924.
  • [4] G. Straż, “The analysis of the impact temperature when it comes to the rate of ignition loss of selected kind of peat”, Scientific Review. Engineering and Environmental Sciences, 2016, vol. 25, no. 73, pp. 264-276.
  • [5] G. Straż, “Estimating soil unit weight from CPT for selected organic soils”, in: Selected technical, economic and ecological aspects of contemporary construction, K. Pujer, Ed. Exante, 2016, pp. 63-77.
  • [6] G. Straż, A. Borowiec, “Estimating the Unit Weight of Local Organic Soils from Laboratory Tests Using Artificial Neural Networks”, Applied Sciences, 2020, vol. 10, no. 7, DOI: 10.3390/app10072261.
  • [7] G. Straż, A. Borowiec, “Evaluation of the unit weight of organic soils from a CPTM using an Artificial Neural Networks”, Archives of Civil Engineering, 2021, vol. 67, no. 3, pp. 259-281, DOI: 10.24425/ace.2021.138055.
  • [8] R.F. Allbrook, “The drop-cone penetrometer method for determining Atterberg limits”, New Zealand Journal of Science, 1980, vol. 23(1), pp. 93-97.
  • [9] T.S.Nagaraj, M.S. Jayadeva, “Re-examination of one-point methods of liquid limit determination”, Geotechnique, 1981, vol. 31, no. 3, pp. 413-425.
  • [10] K. Wires, “The Casagrande method versus the drop-cone penetrometer method for the determination of liquid limit”, Canadian Journal of Soil Science, 1984, vol. 64, no. 2, pp. 297-300.
  • [11] Y. Wasti, M. Bezirci, “Determination of the consistency limits of soils by the fall cone test”, Canadian Geotechnical Journal, 1986, vol. 23, pp. 241-246.
  • [12] B. Christaras, “A comparison of the Casagrande and fall cone penetrometer methods for liquid limit determination in marls from Crete, Greece”, Engineering Geology, 1991, vol. 31, no. 2, pp. 131-142, DOI: 10.1016/0013-7952(91)90002-3.
  • [13] S. Leroueil, J.P. Le Bihan, “Liquid limits and fall cones”, Canadian Geotechnical Journal, 1996, vol. 33, pp. 793-798.
  • [14] T.W. Feng, “Fall-cone penetration and water content relationship of clays”, Geotechnique, 2000, vol. 50, no. 2, pp. pp. 181-187.
  • [15] M. Orhan, M. Özer, N.S. Isik, “Comparison of Casagrande and cone penetration tests for the determination of liquid limit of natural soils”, Journal of the Faculty of Engineering and Architecture of Gazi University, 2006, vol. 21, no. 4, pp. 711-720.
  • [16] M. Özer, “Comparison of liquid limit values determined using the hard and soft base Casagrande apparatus and the cone penetrometer”, Bulletin of Engineering Geology and the Environment, 2009, vol. 68. no. 3, pp. 289-296, DOI: 10.1007/s10064-009-0191-4.
  • [17] G.L. Grønbech, B.N. Nielsen, L.B. Ibsen, “Comparison of liquid limit of highly plastic clay by means of Casagrande and fall cone apparatus”, in Symposium Proceedings: 14th Pan-American Conference on Soil Mechanics and Geotechnical Engineering, 2-6 Oct. 2011, Toronto, Canada. Pan-AM CGS Geotechnical Conference, 2011, pp. 7.
  • [18] G. Spagnoli, “Comparison between Casagrande and drop-cone methods to calculate liquid limit for pure clay”, Canadian Journal of Soil Science, 2012, vol. 92, no. 6, pp. 859-864.
  • [19] L. Di Matteo, “Liquid limit of low-to medium-plasticity soils: comparison between Casagrande cup and cone penetrometer test”, Bulletin of Engineering Geology and the Environment, 2012, vol. 71, no. 11, pp. 79-85.
  • [20] K. Bicalho, J. Gramelich, S. Cunha, “Comparison between Casagrande cup and cone penetrometer test for determining liquid limit of different Brazilian clays”, Comunicações Geológicas, 2014, vol. 101, pp. 1097-1099.
  • [21] G. Kollaros, “Liquid limit values obtained by different testing methods”, Bulletin of the Geological Society of Greece, 2016, vol. 50, no. 2, pp. 778-787, DOI: 10.12681/bgsg.11784.
  • [22] A. El-Shinawi, “A comparison of liquid limit values for fine soils: A case study at the north Cairo-Suez district, Egypt”, Journal of the Geological Society of India, 2017, vol. 89, no. 3, pp. 339-343, DOI: 10.1007/s12594-017-0608-9.
  • [23] E. Hrubesova, B. Lunackova, O. Brodzki, “Comparison of Liquid Limit of Soils Resulted from Casagrande Test and Modificated Cone Penetrometer Methodology”, Procedia Engineering, 2016, vol. 142, pp. 364-370, DOI: 10.1016/j.proeng.2016.02.063.
  • [24] K. Eyyüb, D. Süleyman, “Liquid limit determination of various sand clay mixtures by Casagrande and fall cone test methods”, Journal of Balıkesir University Institute of Science and Technology, 2018, vol. 20, no. 2, pp. 361-371; DOI: 10.25092/baunfbed.486389.
  • [25] H.I. Hawkar, N. Krikar, “Determining Casagrande Liquid Limit Values from Cone Penetration Test Data”, ZANCO Journal of Pure and Applied Sciences, 2019, vol. 31, no. 3, DOI: 10.21271/ZJPAS.31.s3.16.
  • [26] H.U. Rehman, N. Pouladi, M. Pulido-Moncada, E. Arthur, “Repeatability and agreement between methods for determining the Atterberg limits of fine-grained soils”, Soil Science Society of America Journal, 2020, vol. 84, pp. 21-30, DOI: 10.1002/saj2.20001.
  • [27] R. Szmoniewski, S. Szmoniewska, “Metoda jednopunktowego wyznaczania granicy płynności”, Geological Quarterly, 1964, vol. 8, no. 1.
  • [28] K. Jaśkiewicz, M. Wszedyrówny-Nast, “Effect of methodology on determining the Atterberg limits for liquidity index”, Civil and Environmental Engineering, 2013, vol. 4, pp. 113-118.
  • [29] W. Matusiewicz, Z. Lechowicz, G. Wrzesiński, “Determination of liquid limit by Cassagrande method and cone penetrometer”, Scientific Review Engineering and Environmental Sciences, 2016, vol. 25, no. 3, pp.290-300.
  • [30] D. Krawczyk, M. Flieger-Szymańska, “The value of plasticity index (IP) and liquidity index (IL) of North Polish ablation boulder clays and varved clays depending of the method of its determination”, Scientific Review Engineering and Environmental Sciences, 2018, vol. 27, no. 2 (80), pp. 167-174, DOI: 10.22630/PNIKS.2018.27.2.16.
  • [31] D. Krawczyk, “The possibility of objectivization of liquidity index determination based on glacial clays occurring in Poznan and its surrounding area”, Doctoral dissertation, Poznan University of Technology, 2019.
  • [32] K. Goławska, Z. Lechowicz, W. Matusiewicz, M.J. Sulewska, “Determination of The Atterberg Limits of Eemian Gyttja on Samples With Different Composition”, Studia Geotechnica et Mechanica, 2020, vol. 42, no. 2, pp. 168-178, DOI: 10.2478/sgem-2019-0041.
  • [33] EN 1997-2: 2009. Eurocode 7: Geotechnical Design - Part 2: Ground Investigation and Testing.
  • [34] PKN-EN ISO/TS 17892-12:2009: Geotechnical investigation and testing. Laboratory testing of soil. Part 12: Determination of Atterberg limits.
  • [35] PN-EN ISO 17892-12:2018-08. Geotechnical investigation and testing. Laboratory testing of soil. Part 12: Determination of liquid and plastic limits.
  • [36] Voivodship Inspectorate for Environmental Protection in Rzeszow, “Report on the state of the environment of the Podkarpackie Voivodeship in 2013-2015”, Environmental Monitoring Library, Rzeszow, 2016.
  • [37] Atest Ltd, “Particle Size and Shape Analysis in Pharmaceutical R&D and Quality Control”, PM Tour 2019/2020, Lublin, 2020. Available: https://www.atest.pl/.
  • [38] PN-EN ISO 17892-1:2015. Geotechnical investigation and testing - Laboratory testing of soil - Part 1: Determination of water content.
  • [39] PN-EN ISO 17892-2:2015. Geotechnical investigation and testing - Laboratory testing of soil - Part 2: Determination of bulk density.
  • [40] PN-B-04481:1988. Building soils. Laboratory tests.
  • [41] PN-EN ISO 14688-2:2018-05. Geotechnical investigation and testing. Identification and classification of soil. Part 2: Principles for a classification.
  • [42] ASTM D 4318-05:2000. Test Methods for Liquid Limit, Plastic Limit and Plasticity Index of Soils. Annual Book of American Society for Testing and Material Standards.
  • [43] BS 1377:1990. Methods of test for soils for civil engineering purposes. General requirements and sample preparation.
  • [44] PN-EN ISO 14688-1:2018-05. Geotechnical investigation and testing - Identification and classification of soil - Part 1: Identification and description.
  • [45] Statistica 13.3. TIBCO Software Inc. Available: https://www.statsoft.pl/Czytelnia.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d741eace-0cc5-4773-a234-af434f45a52c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.