Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We show that Müntz spaces, as subspaces of C[0, 1], contain asymptotically isometric copies of c0 and that their dual spaces are octahedral.
Wydawca
Czasopismo
Rocznik
Tom
Strony
239--244
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
- Department of Mathematics, University of Agder, Postboks 422, 4604 Kristiansand, Norway
autor
- Department of Mathematics, University of Agder, Postboks 422, 4604 Kristiansand, Norway
autor
- Department of Mathematics, University of Agder, Postboks 422, 4604 Kristiansand, Norway
autor
- Department of Mathematics, University of Agder, Postboks 422, 4604 Kristiansand, Norway
Bibliografia
- [1] Albiac F., Kalton N., Topics in Banach Space Theory, Graduate Texts in Math., 233, Springer, 2006
- [2] Dowling P. N.„ Lennard C. J., Turett B., Asymptotically isometric copies of c0 in Banach spaces, J. Math. Anal. Appl., 1998, 219(2), 377–391
- [3] James R. C., Uniformly non-square Banach spaces, Ann. of Math., 1964, 80, 542–550
- [4] Deville R., A dual characterization of the existence of small combination of slices, Bull. Austr. Math. Soc., 1988, 37(1), 113–120
- [5] Godefroy G., Metric characterizations of first Baire class linear forms and octahedral norms, Studia Math., 1989, 95(1), 1–15
- [6] Becerra Guerrero J., López-Pérez G., Rueda Zoca A., Octahedral norms and convex combination of slices in Banach spaces, J. Funct. Anal., 2014, 266(4), 2424-–2435
- [7] Haller R., Langemets J., Põldvere M., On duality of diameter 2 properties, J. Convex Anal., 2015, 22(2), 465–482
- [8] Harmand P., Werner D., Werner W., M-Ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math., 1547, Springer, Berlin-Heidelberg-New York, 1993
- [9] Gurariy V., Lusky W., Geometry of Müntz spaces and related questions, Lecture Notes in Math., 1870, Springer-Verlag, Berlin, 2005
- [10] Petráček P., Geometry of Müntz spaces, in WDS’12 Proceedings of Contributed Papers: Part I - Mathematics and Computer Sciences (eds. J. Safrankova and J. Pavlu), Prague, Matfyzpress, 2012, 31–35
- [11] Dowling P. N., Johnson W. B., Lennard C. J., Turett B., The optimality of James’s distortion theorems, Proc. Amer. Math. Soc., 1997, 125(1), 167–174
- [12] Abrahamsen T. A., Lima V., Nygaard O., Troyanski S., Diameter two properties, Convexity and smoothness, Milan J. Math., 2016, 84(2), 231–242
- [13] Dilworth S. J., Girardi M., Hagler J., Dual Banach spaces which contain an isometric copy of L1, Bull. Polish Acad. Sci. Math., 2000, 48(1), 1–12
- [14] Werner D., A remark about Müntz spaces spaces, http://page.mi.fu-berlin.de/werner99/preprints/muentz.pdf.
- [15] Yagoub-Zidi Y., Some isometric properties of subspaces of function spaces, Mediterr. J. Math., 2013, 10, 1905—1915
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d73f70ec-76c2-4ea9-a501-10203da07a9b