Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Induction machines have of late become the most popular workhorses in the industry replacing DC machines because of their advantages, such as reduced cost, reliability and the absence of commutators, which make them adapt to unfavourable conditions with lower maintenance requirement. However, higher-order models of AC machines, nonlinearities in model equations, uncertainties in parameters and load disturbances make induction motors difficult to control than that of DC motors. In this paper, a robust control strategy considering the recent advances in technology is proposed employing input-output feedback linearization for the exact decoupling of electromagnetic torque and rotor flux using fractional-order sliding mode controller (SMC) for the outer speed loop. The sliding mode observer is also designed to extract the rotor flux from the DC input voltage of the inverter and stator current measurements. Finally, a comparison between the commonly used proportional integral and derivative (PID) controller and the proposed fractional-order SMCs is made and the conclusion is reached.
Wydawca
Czasopismo
Rocznik
Tom
Strony
109--122
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
- Electrical and computer Engineering Department, Debre Berhan University, Debre Berhan, Postal Box 445, Ethiopia
autor
- Ethiopian Aviation Academy, Ethiopian AirLines, Addis Ababa, Ethiopia
Bibliografia
- Ben Regaya, C., Farhani, F. and Zaafouri, A. (2017). An Adaptive Sliding-Mode Speed Observer. ICIC Express Letters, 11(4), pp. 763–771.
- Benchabane, F., Titaouine, A., Taibi, D. and Yahia, K. (2010). Systematic fuzzy sliding mode approach combined with extended Kalman filter for permanent magnet synchronous motor control. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 10–13 October 2010, Istanbul, Turkey, No. 7, pp. 2169–2174.
- Bill, M. and Dawn, T. (2017). Control Tutorials for MATLAB and Simulink – Motor Position Root Locus Controller Design, [online]. Available at: http://ctms.engin.umich.edu/CTMS/index.php?example=MotorPosition§ion=ControlRootLocus. [Accessed 15 Nov. 2019].
- Fu, X. and Li, S. (2015). A Novel Neural Network Vector Control Technique for Induction Motor Drive. IEEE Transactions on Energy Conversion, 30, pp. 1428–1437.
- Grzegorz, T. (2017). Sliding Mode Speed Control of an Induction Motor Drive Using Time-Varying Switching Line*. Power Electronics Drives, 2(37), pp. 105–120.
- Haitham Abu-Rub, J. G. and Iqbal, A. (2012). High Performance Control of AC Drives with Matlab/Simulink Models High Performance Control of AC Drives with Matlab/Simulink. Chichester, West Sussex: John Wiley & Sons, Ltd., Publication.
- Huang, J., Li, H., Chen, Y. and Xu, Q. (2012). Robust Position Control of PMSM Using Fractional-Order Sliding Mode Controller. Abstract and Applied Analysis, 2012, pp. 1–33.
- Lascu, C., Jafarzadeh, S., Fadali, S. M. and Frede, B. (2016). Direct Torque Control with Feedback Linearization for Induction Motor Drives. IEEE Transactions on Power Electronics, 1, pp. 1–9.
- Lazreg, M. H. and Bentaallah, A. (2018). Input Output Linearization Control of Double Star Induction Machine. Revue Roumaine des Sciences Techniques - Serie Électrotechnique et Énergétique, 63(6), pp. 423–428.
- Marquez, H. J. (2003). Nonlinear Control Systems Analysis and Design. New Jersey: John Wiley & Sons, Inc., Publication.
- Mesloub, H., Benchouia, M. and Goléa, A. (2016). Predictive DTC Schemes with PI Regulator and Particle Swarm Optimization for PMSM Drive: Comparative Simulation and Experimental Study. The International Journal of Advanced Manufacturing Technology, 86, pp. 3123–3134.
- Panchal, S. N., Sheth, V. S. and Pandya, A. A. (2013). Simulation Analysis of SVPWM Inverter Fed Induction Motor Drives. Ashoka Technologies, 2, pp. 18–22.
- Riccardo, M. V. and Cristiano, P. T. (2009). Advances in Industrial Control. London: Springer-Verlag London Limited 2010.
- Saber, K., Soufien, G., Abdellatif, M. and Mimouni, M. F. (2017). Implementation on the FPGA of DTC-SVM Based Proportional Integral and Sliding Mode Controllers of an Induction Motor: A Comparative Study. Journal of Circuits, Systems, and Computers, 26(3), pp. 1–32.
- Slotine, L. and Jean-Jacques, E. (1991). Applied Nonlinear Control. New Jersey: Prentice Hall.
- Tabatabaei, M. and Heidarpoor, S. (2017). Speed Control of a DC Motor Using a Fractional Order Sliding Mode Controller. In: 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), 6–9 June 2017, Milan, Italy, No. 3, pp. 1057–1060.
- Tang, Y., Zhang, X., Zhang, D., Zhao, G. and Guan, X. (2013). Fractional Order Sliding Mode Controller Design for Antilock Braking Systems. Neurocomputing, 111, pp. 122–130.
- Tibor, V., László, S. and Handler, Á. (2019). An Investigation of Direct Torque Control and Hysteresis Current Vector Control for Motion Control Synchronous Reluctance Motor Applications. Power Electronics and Drives, 4(39), pp. 115–124.
- Uddin, M. and Hafeez, M. (2012). FLC-Based DTC Scheme to Improve the Dynamic Performance of an IM Drive. IEEE Transactions on Industry Applications, 48(2), pp. 823–831.
- Vas, P. (1998). Sensorless Vector and Direct Torque Control. New York: Oxford University Press.
- Zaidi, S., Naceri, F. and Abdssamed, R. (2014). Input-Output Linearization of an Induction Motor Using MRAS Observer. International Journal of Advanced Science and Technology, 68, pp. 49–56.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7378b7c-5b23-4538-b362-3e190b8f205f